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Interface ’88, the 20th Symposium on the Interface: Computing Science and Statistics, was the
first of the Interface Symposia held under the auspices of the Interface Foundation of North America, a
non-profit, educational corporation. The Symposium was extremely successful. The attached program
and abetracts indicate the quality and scope of the meeting. There were approximately 130
contributed papers up from approximately 60 the prior year. There were some 60 invited papers up
somewhat {rom the previous year. Attendance jumped from about 300 to about 425. We received
numerous compliments on the organization and the quality of the program.

Some highlights and innovations we feel pleased to report. For the first time, Interface °88 had

a series of special invited papers along with the plenary address. Professor Bradley Efron gave the

plenary address. Professors Jerry Friedman, George Box and Tom Banchoff were the three special

invited lecturers. These sessions proved to be extremely well atiended (to overflow crowds) and

~~____ sharpened the focus of the meeting. We also introduced for the first time a special invited session for

new Ph.D.’s to focus attemtion on their research. Other sessions which were new to this meeting

included sessions on Discrewtics, Symbolic Computation, Supercomputing, Neural Networks

and Object Oriented Programming. . >An emerging area which received attention in the contributed
sessions was on Information Systems, Databases and Statistics. This meeting was also the first to have A

a serious technical focus which was Computationally Intensive Statistical Methods. - - 4 LT s / -

The exhibits were by invitation only. The exhibitors were invited on the basis of their ability
to complement the technical program. Additional cooperating societies were involved in Interface ’88.
New with this meeting were the American Mathematical Society, the National Computer Graphics
Association, the Operations Research Society of America, The Washington Statistical Society and the
Virginia Academy of Science’s Chapter of ASA. This year with the help of the funding agencies, we
introduced a young investigator’s fund used primarily to fund young Ph.D.’s and graduate student
attendance at the Interface. More than $10,000 was set aside for this purpose. This was a highly
successful and well received innovation.

(7t A




Interface 89 is scheduled for Orlando Florida in early April. The University of Central Florida
is the host institution with local arrangements being made by Professor Linda Malone. Professor Ken
Berk of Illinois State University is the Program Chairman. Interface *90 will be held in East Lansing
at Michigan State University. Professor Raoul LePage will be the Program Chairman. Interface *91
will be under the Chairmanship of Dr. John Kettenring of Bell Communications Research. The site
will likely be on the West Coast, but final arrangements have yet to be made.

This final report is organized as follows: Immediately following in Appendix A is the Program
Information, Program Schedule and Abstracts. Appendix B contains the detailed list of paid attendees.
As can be expected, some attendees failed to pay registration fees and hence are not recorded. We
believe actual attendance was closer to 445. Appendix C contains the detailed expenditures billed to
the Air Force Office of Scientific Research.
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Appendix A
Program Information, Program Schedule
Abstracts and Participant Index




Symposium Chairman

Edward J. Wegman
Center for Computational Statistics
George Mason University
Fairfax, VA 22030
(703) 323-2723
EMAIL: EWEGMAN@GMUVAX (bitnet) or
EWEGMAN@QGMUVAX.GMU.EDU (arpanet)

E N N .

Sympoeium Coordinator and Exhibit Manager

Jan P. Guenther
Center for Computational Statistics
George Mason University
Fairfax, VA 22030
(703) 764-6170

Program Committee

. David Allen John Miller
University of Kentucky George Mason University

Chris Brown Mervin Muller
University of Rochester Ohio State University

Martin Fischer Stephen Nash
Defense Communication Engineering Center George Mason University

Donald T. Gantz Emanuel Parzen
George Mason University Texas A and M University

Prem K. Goel Richard Ringeisen
Ohio State University Clemson University
Muhammed Habib Jerty Sacks

University of North Carolina

Mark E. Johnson
Los Alamos National Laboratory

Sallie Keller-McNulty
Kansas State University

Raoul LePage
Michigan State University

Don McClure
Brown University

University of Illinois

David Scott
Rice University

Nozer Singpurwalla
George Washington University

Werner Stuetzle
University of Washington

Paul Tukey
Bell Communications Research




Past Interface Symposia

Southern California, 1968, 1969, 1970, 1971

Oklahoma State University, 1972
5th Symposium

University of California, Berkeley, 1973
6th Symposium

{owa State University, 1974
7th Symposium

University of California, Los Angeles, 1975
8th Symposium

_Harvard University, 1976
9th Symposium

National Bureau of Standards, 1977
10th Symposium

North Carolina State University, 1978
11th Symposium '

University of Waterloo, 1979

12th Symposium

Carnegie-Mellon University, 1981
13th Symposium

Rensselaer Polytechnic Institute, 1982
14th Symposium

IMSL, Inc (held in Houston), 1983
15th Symposium

University of Georgia (held in Atlanta), 1984
16th Symposium

University of Kentucky, 1985
17th Symposium

Colorado State University, 1986
18th Symposium

(-]

Chairs: Arnold Goodman,
Nancy Mann

Chair: Mitchell O. Locks
Keynote Speaker: H. O. Hartley

Chair: Michael Tarter
Keynote Speaker: John Tukey

Chair: William J. Kennedy
Keynote Speaker: Martin Wilk

Chair: James W. Frane
Keynote Speaker: Edwin Kuh

Chairs: David Hoaglin and
Roy E. Welsch
Keynote Speaker: John R. Rice

Chair: David Hogben
Keynote Speaker: Anthony Ralston

Chairs: Ron Gallant and
Thomas Gerig
Keynote Speaker: Nancy Mann

Chair: Jane F. Gentleman
Keynote Speaker: D. R. Cox

Chair: William F. Eddy
Keynote Speaker: Brad Efron

Chairs: John W. Wilkinson,
Karl W. Heiner and Richard Sacher
Keynote Speaker: John Tukey

Chair: James Gentle
Keynote Speaker: Richard Hamming

Chair: Lynne Billard
Keynote Speaker: George Marsalgia

Chair: David Allen
Keynote Speaker: John C. Nash

Chair: Thomas Boardman
Keynote Speaker: John Tukey




Past Interface Symposia (Continued)

Temple University (held in Philadelphia), 1987 Chair: Richard Heiberger
19th Symposium Keynote Speaker: Gene Golub
George Mason University, 1988 Chair: Edward J. Wegman
20th Symposium Keynote Speaker: Brad Efron

Future Interface Symposia

University of South Florida, 1989 Chairs: Ken Berk and Linda Malone
21st Symposium

Michigan State University, 1990 Chair: Raoul LePage
22nd Symposium

General Information

The 20th Symposium represents a milestone in the development of the interface between
computing science and statistics. In August, 1987 the Interface Foundation of North America was
incorporated as a non-profit, educational corporation whose main charter is to provide the legal entity
underpinning the Symposium series. The Foundation represents a maturation of the Symposium series
and ensures its continuation as an independent meeting focused on the interface. The 20th Symposium
is the first held under the auspices of the Foundation. It is also the first with a focused theme.

Theme: — Computationally Intensive Statistical Methods

Keynote Address: — “Computationally intensive statistical inference”
Bradley Efron, Department of Statistics, Stanford University

Invited Papers: — There are 60 invited papers including several with invited discussion organized into
23 sessions. In addition to the plenary session with the keynote address by Brad Efron, there are three
special invited lectures featuring Jerome Friedman, George E. P. Box and Thomas BanchofT.

Contributed Papers: — There are 128 contributed papers scheduled in 26 sessions.

Proceedings: — The Proceedings of the 20th Interface Symposium will be published by the American
Statistical Association and will be available late autumn of 1988.

Opening Reception: — All registrants are invited to attend the Opening Reception on Wednesday
evening from 8:00 p.m. until 10:00 p.m. The Reception will include a light food service and two tickets
for drinks will be provided registrants. A cash bar will be available thereafter. The Reception will be
held in the hotel ballroom.

Banquet: — The Banquet will be served buffet style on Friday evening beginning at 7:00 p.m. The
planned menu includes roast turkey, baked ham, seafood in leek and wine sauce, roast beef, and
chicken in almond sauce. The banquet is a separate cost item. It will be held in the hotel ballroom
following a cash bar beginning at 6:00 p.m. Following the banquet, the Mill Run Dulcimer Band, a
Washington-area based bluegrass group will perform. As many may known, the Washington, D. C.
area is noted as a headquarters area for bluegrass and old-time country music.
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Other Food Service: — Coffee and Danish will be served during the Thursday, Friday and Saturday
morning breaks and soft drinks and cookies during the afternoon breaks on Thursday and Friday.
These food services will be available in the exhibit area. Luncheons and other meals will be at the
option of the registrants and may be obtained in the hotel or in nearby restaurants. A cash bar will
also be available on Thursday evening from 6:00 p.m. until 9:00 p.m.

- Shuttle Service: — A free shuttle service is provided by the hotel to and from the Dulles International
Airport on the half hour. In addition, the hotel will be running a shuttle service to and from the
Vienna Metro (subway) station. The schedule of service will be posted. The Metro systems provides
convenient and economical access to the downtown Washington metropolitan area.

Exhibits: — The exhibit area is located in rooms 9 and 10 of the hotel. Exhibits will be available to
registrants immediately following the Plenary session on Thursday morning through the close of the
Symposium on Saturday.

Exhibitors

Ametek Computer Corporation
606 East Huntington Drive
Monrovia, CA 91016

(714) 599-4662

Automatic Forecasting Systems, Inc.
P. O. Box 563

Hatboro, PA 19040

(215) 675-0652

BBN Software

10 Fawcett Street
Cambridge, MA 02238
(617) 873-8116

BMDP Statistical Software, Inc.
1440 Sepulveda Boulevard, Suite 316
Los Angeles, CA 90025

(213) 479-7799

Intel Scientific Computers
15201 NW Greenbrier Parkway
Beaverton, OR 97006

(503) 629-7631

Marcel-Dekker, Inc..
270 Madison Avenue
New York, NY 10016
(212) 696-9000

IMSL, Inc.

2500 ParkWest Tower One
2500 CityWest Boulevard
Houston, TX 77042-3020
(713) 782-6060

North Holland/Elsevier Publishers
P. O. Box 1991

1000 BZ Amsterdam

The Netherlands

Numerical Algorithms Group
1101 31st Street, Suite 100
Downers Grove, IL 60515
(312) 971-2337

Springer-Verlag, Inc.
175 Fifth Avenue
New York, NY 10010
(212) 460-1600

SYSTAT, Inc.

1800 Sherman Avenue
Evanston, IL 60201
(312) 864-5670

TCI Software

1190 Foster Road

Las Cruces, NM 88001
{505) 522-4600

Tektronix, Inc.

M.S. 48-300, Industrial Park
Beaverton, OR 97077

(503) 627-7111

Wadsworth & Brooks/Cole
Advanced Books and Software
10 Davis Drive

Belmont, CA 94002

(415) 595-2350
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Short Course

Forecasting on the IBM-PC - A Survey, Wednesday, April 20, 9:00 a.m. to 4:30 p.m., David P. Reiily,
Automatic Forecasting Systems, Inc., P. O. Box 563, Hatboro, PA 19040, (215) 675-0652

Cooperating Societies

' American Mathematical Society
P. O. Box 6248
Providence, RI 02940

American Statistical Association
1429 Duke Street
Alexandria, VA 22314

International Association for Statistical Computing
NTDH

P. O. Box 145

N-7701 Steinkjer

Norway

Institute of Mathematical Statistics
3401 Investment Boulevard, Suite 7
Hayward, CA 94545

National Computer Graphics Association
2722 Merilee, Suite 200
Fairfax, VA 22031

Operations Research Society of America
Mount Royal and Guilford Avenues
Baltimore, MD 21202

Society for Industrial and Applied Mathematics
1400 Architects Building

117 South 17th Street

Philadelphia, PA 19103

Virginia Academy of Sciences Chapter of the ASA
¢/o Golde 1. Holtzman

Department of Statistics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Washington Statistical Society
P. O. Box 70843
Washington, DC 20024-0843




Date and Time

Thursday, April 21
8:45 a.m. - 9:45 a.m.

10:00 a.m. - 12:00 noon

1:30 p.m. - 3:30 p.m.

3:45 p.m. - 5:45 p.m.

Friday, April 22
8:00 a.m. - 10:00 p.m.

10:15 a.m., - 12:15 p.m.

Program Schedule

Session Title

Keynote Address: Computationally Intensive Statistical

Inference

Computational Aspects of Time Series Analysis

Inference and Artificial Intelligence

Computational Discrete Mathematics

Contributed: Software Tools

Contributed: Image Processing I

Contributed: Bootstapping and Related Computational
Methods

Special Invited Lecture I

Image Processing and Spatial Processes

Parallel Computing Architectures

Contributed: Statistical Methods !

Contributed: Hardware and Software Reliability
Contributed: Appi.cations I

Special Invited Session for Recent Ph.D.’s

Simulation

Symbolic Computation and Statistics

Contributed: Statistical Graphics

Contributed: Models of Imprecision in Expert Systems
Contributed: Time Series Methods

Computer-Communication Networks

Supercomputing, Design of Experiments and Bayesian
Analysis, Part 1

Numerical Methods in Statistics

Contributed: Probability and Stochastic Processes

Contributed: Statistical Methods II

Contributed: Nonparametric and Robust Techniques

Special Invited Lecture II

Supercomputing, Design of Experiments and Bayesian
Analysis, Part 2

Neural Networks

Contributed: Applications Il

Contributed: Image Processing Il

Contributed: Simulation I

-1

Room

Ballroom

Room 6
Room 5
Room 3
Room 2
Room D
Room 1

Room 6
Room 5
Room 3
Room 2
Room D
Room 1

Room 6
Room 5
Room 3
Room 2
Room D
Room 1

Room 6
Room 5

Room 3
Room 2
Room D
Room 1

Room 6
Room 5

Room 3
Room 2
Room D
Room 1




2:00 p.m. - 4:00 p.m,

Saturday, April 23
8:30 a.m. - 10:30 a.m.

10:45 a.m. - 12:45 p.m.

Tales of the Unexpected: Successful
Interdisciplinary Research

Density Estimation and Smoothin z

Object Oriented Programming

Contributed: Numerical Methods

Contributed: Bayesian Methods

Contributed: Expert Systems in Statistics

Computational Aspects of Simulated Annealing
Dynamical High Interaction Graphics
Contributed: Statistical Methods III
Contributed: Simulation II

Contributed: Biostatistics Applications
Contributed: Discrete Mathematical Methods

Special Invited Lecture III
Entropy Methods

Contributed: Information Systems, Databases and Statistics

Contributed: arallel Computing
Contributed: Density and Function Estimation
Contributed: Statistical Methods IV

Room 6

Room 5
Room 3
Room 2
Room D
Room 1

Room 6
Room 5
Room 3
Room 2
Room D
Room 1

Room 6
Room 5
Room 3
Room 2
Room D
Room 1
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Technical and Social Program

WEDNESDAY, APRIL 20, 1988

9:00 a.m. - 4:30 p.m. Room 6
Short Course - Forecasting on the IBM-PC, David Reilly, Automatic Forecasting Systems,
Inc.

4:00 p.m. Lobby
Registration for Symposium

5:00 p.m. Room G

Interface Board of Directors Meeting (by invitation only)
8:00 p.m. - 10:00 p.m. Ballroom
Free Opening Reception
TIIURSDAY, APRIL 21, 1988

7:30 a.m. Lobby

Registration

8:30 a.m. - 8:45 a.m. Ballroom
Welcoming Remarks

8:45 a.m. - 9:45 a.m. Ballroom

Plenary Session, Chaired by: Edward J. Wegman, George Mason University
“Computationally intensive statistical inference,” Bradley Efron, Stanford University
10:00 a.m. - 12:00 noon Room 6
Computational Aspects of Time Series Analysis, Chaired by: Emanuel Parzen,
Texas A & M University

“Recent progress in algorithms and architectures for time series analysis,” George Cybenko,
Tufts University

“Numerical approach to non-gaussian smoothing and its application,” Genshiro Kitagawa,
The Institute of Statistical Mathematics

Discussants - Will Gersch, University of Hawaii and H. Joseph Newton, Texas A & M
University

13




THURSDAY, APRIL 21, 1988

10:00 a.m. - 12:00 noon Room 5
Inference and Artificial Intelligence, Chaired by: N. Singpurwalla, Ge6rge Washington
University

“Spectral Analysis on a LISP machine,” Don Percival, University of Washington

“DeFinetti’s approach to group decision making,” Richard Barlow, University of California,
Berkeley

“Meta-analysis,” Ingram Olkin, Stanford University

10:00 a.m. - 12:00 noon Room 3
Computational Discrete Mathematics, Chaired by: Rich Ringeisen, Clemson University

“Discrete structures and reliability computations,” James P. Jarvis, Clemson University
and Douglas R. Shier, College of William and Mary

“Random graphs,” Edward R. Scheinerman, The Johns Hopkins University
“Structure and finiteness conditions on graphs,” Neil Robertson, Ohio State University

10:00 a.m. - 12:00 noon : Room 2
Contributed Papers: Software Tools, Chaired by: Leonard Hearne, George Mason

University

“An introduction to CART'™: classification and regression trees,” Gerard T. LaVarnway,
Norwich University

“Noise appreciation: analyzing residuals using RS/Explore,” David A. Burn and Fanny
O’Brien, BBN Software Products Corporation

“COSTAR: an environment for computer-guided data analysis,” David A. Whitney and
Ilya Schiller, TASC

“A closer look at symbolic computation,” William M. Makuch, General Electric Corporation
and John W. Wilkinson, Rensselaer Polytechnic Institute

10:00 a.m. - 12:00 noon Room D
Contributed Papers: Image Processing I, Chaired by: A. K. Sood, George Mason University

“Image analysis of a turbulent object using fractal parameters,” Amar Ait-Kheddache,
North Carolina State University

“Identification of closed figures,” Jeff Banfield, Montana State University and Adrian
Raftery, University of Washington

“Compression of image data using arithmetic coding,” Ahmed H. Desoky and Thomas
Klein, University of Louisville

14




THURSDAY, APRIL 21, 1988

“Image analysis of the microvascular system in the rat cremaster mu;scle.” C. O’Connor,
P. D. Harris, A. Desoky and G. [ghodaro, University of Louisville

“Automatic detection of the optic nerve in color images of the retina,” Norman Katz,
Subhasis Chaudhuri, and Michael Goldbaum, University of California, San Diego and
Mark Nelson, Radford Company
10:00 a.m. - 12:00 noon Room 1
Contributed Papers: Bootstrapping and Related Computational Methods, Chaired by:
Richard Bolstein, George Mason University

“A Monte Carlo study of cross-validation and the C, criterion for model selection in
multiple linear regression,” Robert M. Boudreau, Virginia Commonwealth University

“Bootstrapping regression strategies,” David Brownstone, University of California, Irvine

“Bootstrapping the missed regression model with reference to the capital and energy
complementarity debate,” Baldev Raj, Wilfted Laurier University

“Efficient data sensitivity computation for maximum likelihood estimation,” Daniel Chin
and James C. Spall, The Johns Hopkins University

“Bootstrap procedures in random effect models for comparing response rates in multi-center
clinical trials,” Michael F. Miller, Hoechst-Roussel Pharmaceuticals, Inc.

1:30 p.m. - 2:45 p.m. Room 6
Special Invited Lecture I, Chaired by: Jim Filliben, National Bureau of Standards

“Fitting functions to scattered noisy data in high dimensions,” Jerome Friedman,
Stanford University

1:30 p.m. - 3:30 p.m. Room §
Image Processing and Spatial Processes, Chaited by: Don McClure, Brown University

Introduction, Don McClure, Brown University

“A multilevel-multiresolution technique for image analysis and robot vision via
renormalization group ideas,” Basilis Gidas, Brown University

“A mathematical approach to expert system construction,” Alan Lippman, Brown
University

15




THURSDAY, APRIL 21, 1988

1:30 p.m. - 3:30 p.m. Room 3

Parallel Computing Architectures, Chaired by: Chris Brown, University of Rochester

“Experiences with the BBN Butterfly'™ parallel processor,” John Mellor-Crummy,
University of Rochester

“Statistical computing on a hypercube,” George Ostrouchov, Oak Ridge National Lab

“Asychronous iteration,” William F. Eddy and Mark Schervish, Carnegie-Mellon University

1:30 p.m. - 3:30 p.m. Room 2

Contributed Papers: Statistical Methods I, Chaired by: Walter Liggett, National Bureau of
Standards

“An example of the use of a Bayesian interpretation of multiple discriminant analysis
results,” James R. Nolan, Siena College

“Real-time classification and discrimination among components of a mixture distribution,”
Douglas A. Samuelson, International Telesystems Corporation

“Comparison of three ‘local model’ classification methods,” Daniel Normolle, University of
Michigan

“Application of posterior approximation techniques for the ordered Dirichlet distribution,”
Thomas A. Mazzuchi and Refik Soyer, George Washington University

“Unbiased estimates of multivariate general moment functions of the population and
application to sampling without replacement for a finite population,” Nabih N. Mikhail,
Liberty University

1:30 p.m. - 3:30 p.m. Room D

Contributed Papers: Hardware and Software Reliability, Chaired by: Asit Basu, University
of Missouri

“Linear prediction of failure times of a repairable system,” M. Ahsanullah, Rider College

“The simulation of life tests with random censoring,” Joseph C. Hudson, GMI Engineering
and Management Institute

“The use of general modified exponential curves in software reliability modeling,”
Taghi M. Khoshgoftaar, Florida Atlantic University

“A model for information censoring,” William A. Link, Patuxent Wildlife Research Center

“Increasing reliability of multiversion fault-tolerant software design by modulation,” Junryo
Miyashita, California State University, San Bernardino
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1:30 p.m. - 3:30 p.m. Room 1

Contributed Papers: Applications I, Chaired by: Susannah Schiller, National Bureau of
Standards

“Classifying linear mixtures with an application to high resolution gas chromatography,”
William S. Rayens, University of Kentucky

“Bias of animal trend estimates,” Paul H. Geissler and William A. Link, Patuxent Wildlife
Research Center

“A non-random walk through futures prices of the British pound,” William S. Mallios,
California State University, Fresno

“A stochastic extension of Petri net graph theory,” L. M. Anneberg, Wayne State University

“Neural Petri nets,” N. H. Chamas, Wayne State University

3:45 p.m. - 5:45 p.m. Room 6

Special Invited Session for Recent Ph.D.’s, Chaired by: John J. Miller, George Mason
University

“Additive principal components: a method for estimating equations with small variance
from multivariate data,” Deborah Donnell, Bellcore

“Gamma processes, paired comparisons and ranking,” Hal Stern, Harvard University
“Smoothing data with correlated errors,” Naomi Altman, Cornell University

“The data viewer: program for graphical data analysis,” Catherine Hurley, University of
Waterloo

3:45 p.m. - 5:45 p.m. Room 5

Simulation, Chaired by: Donald T. Gantz, George Mason University
“Random variables for supercomputers,” George Marsaglia, Florida State University

“Computational statistics in experimental design for studies of variability,” John Ramberg,
University of Arizona

“Linear combinations of estimators of the variance of the sample mean,” Bruce W.
Schmeiser, Purdue University
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3:45 p.m. - 5:45 p.m. Room 3

Symbolic Computation and Statistics, Chaired by: William S. Rayens, University of
Kentucky

“Some applications of symbol manipulation in statistical analysis,” Kathryn M. Chaloner,
University of Minnesota

“Symbolic computation in statistical decision theory,” Marietta Tretter, Texas A & M
University

“Partial differentiation by computer with applications to statistics,” John W. Sawyer, Jr.,
Texas Tech University

3:45 p.m. - 5:45 p.m. Room 2

Contributed Papers: Statistical Graphics, Chaired by: Robert Launer, Army Research
Office

“Visual multidimensional geometry with applications,” Alfred Inselberg, IBM Scientific
Center, Los Angeles and Bernard Dimsdale, University of California

“Some graphical representations of multivariate data,” Masood Bolorforoush and
Edward J. Wegman, George Mason University

“Graphical representations of main effects and interaction effects in a polynomial regression
on several predictors,” William DuMouchel, BBN Software Products Corporation

“Chernoff faces: a PC implementation,” Mohammad Dadashzadeh, University of Detroit

3:45 p.m. - 5:45 p.m. Room D

Contributed Papers: Models of Imprecision in Expert Systems, Chaired by:
Mark Youngren, George Washington University

“Fusion and propagation of graphical belief models,” Russell Almond, Harvard University

“Belief function computations for paired comparisons,” David Tritchler and Gina Lockwood,
Ontario Cancer Institute

“Variants of Tierney-Kadane,” Guenter Weiss and H. A. Howlader, University of Winnepeg

“Dynamically updating relevance judgements in probabilistic information systems via users’
feedback,” Peter Lenk and Barry D. Floyd, New York University

“Computational requirements for inference methods in expert systems: a comparative
study,” Ambrose Goicoechea, George Mason University
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THURSDAY, APRIL 21, 1988
3:45 p.m. - 5:45 p.m. Room 1
Contributed Papers: Time Series Methods, Chaired by: Neil Gerr, Office of Naval
Research

“Inference techniques for a class of exponential time series,” V. Chandrasekar and
Peter Brockwell, Colorado State University

“Some recursive methods in time series analysis,” Q. P. Duong, Bell Canada

“Time series in a microcomputer environment,” John Henstridge, Numerical Algorithms
Group

“Smoothing irregular time series,” Keith W. Hipel, University of Waterloo, A. I. McLeod,
The University of Western Ontario and Byron Bodo, Ministry of the Environment

“Computation of the theoretical autocovariance function of multivariate ARMA processes,”
Stefan Mittnik, SUNY at Stony Brook

6:00 p.m. - 8:00 p.m. Room G
Executive Session of Statistical Computing Section of ASA (by invitation only)

6:00 p.m. - 9:00 p.m. Ballroom
Cash Bar

FRIDAY, APRIL 22, 1988
8:00 a.m. - 10:00 a.m. Room 6
Computer-Communication Networks, Chaired by: Martin Fischer, Defense Communication
Engineering Center

“Introduction to packet switching networks,” Jeffrey Mayersohn, BBN Communication
Corporation

“Electronic mail - a valuable augmentation tool for scientists,” Elizabeth Feinler,
SRI International

“Networks to support science,” Stephen Wolff, National Science Foundation
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FRIDAY, APRIL 22, 1988

8:00 a.m. - 10:00 a.m. Room 5

Supercomputing, Design of Experiments and Bayesian Analysis, Part I, Chaired by:
Jerry Sacks, University of Illinois

“Acceleration methods for Monte Carlo integration by Bayesian inference,” John Geweke,
Duke University

“Software for Bayesian analysis: current status and additional needs,” Prem K. Goel,
Ohio State University

“Some numerical and graphical stategies for implementing Bayesian methods,”
Adrian Smith, University of Nottingham

8:00 a.m. - 10:00 a.m. Room 3

Numerical Methuuas for Statistics, Chaired by: Stephen Nash, George Mason University
“Interior point methods for linear programming,” Paul Boggs, National Bureau of Standards

“Block iterative methods for parailel optimization,” Stephen Nash and Ariela Sofer, George
Mason University

“New methods for B-differentiable functions: theory and applications,” Jong-Shi Pang,
The Johns Hopkins University

8:00 a.m. - 10:00 a.m. Room 2

Contributed Papers: Probability and Stochastic Processes, Chaired by: Yash Mittal,
National Science Foundation

“Moving window detection for 0-1 Markov trials,” Joseph Glaz, University of Connecticut,
Philip C. Hormel, CIBA-GEIGY Corporation and Bruce McK. Johnson, University of
Connecticut

“Maximum queue size and hashing with lazy deletion,” Claire M. Mathieu, Laboratoire
d’Informatique de I’Ecole Normale Superieure and Jeffrey S. Vitter, Brown University

“On the probability integrals of the multivariate normal,” Dror Rom and Sanat Sarkar,
Temple University

“Computational aspects of harmonic signal detection,” Keh-Shin Lii and Tai-Houn Tsou,
University of California, Riverside

“Maximum likelihood estimation of discrete control processes: theory and application,”
John Rust, University of Wisconsin




FRIDAY, APRIL 22, 1988

8:00 a.m. - 10:00 a.m. Room D
Contributed Papers: Statistical Methods 1I, Chaired by: CIiff Sutton, George Mason
University

“Computing extended maximum likelihood estimates in generalized linear models,”
Douglas B. Clarkson, IMSL, Inc. and Robert I. Jennrich, University of California, Los
Angeles

“Assessment of prediction procedures in multiple regression analysis,” Victor Kipnis,
University of Southern Florida

“Estimation of the variance matrix for maximum likelihood parameters by quasi-Newton
methods,” Linda Pickle, National Cancer Institute and Garth P. McCormick, George
Washington University

“Variable selection in multivariate multiresponse permutation procedures,” Eric P. Smith,
Virginia Tech

“The effect of small covariate-criterion correlations on analysis of covariance,”
Michael J. Rovine, A. von Eye and P. Wood, Pennsylvania State University

8:00 a.m. - 10:00 a.m. Room 1
Contributed Papers: Nonparametric and Robust Techniques, Chaired by: Paul Speckman,
University of Missouri

“Robustness of weighted estimators of location: a small sample survey,” Greg Campbell
and Richard I. Shrager, NIH

“A comparison of Spearman's footrule and rank correlation coefficient with exact tables and
approximations,” LeRoy A. Franklin, Indiana State University

“Approximations of the Wilcoxon test in small samples with lots of ties,”
Arthur R. Silverberg, Food and Drug Administration

“Simulated power comparisons of MRPP rank tests and some standard score tests,”
Derrick S. Tracy and Khushnood A. Khan, University of Windsor

10:15 a.m. - 12:15 p.m. Room 6
Special Invited Lecture II, Chaired by: Mervin Muller, Ohio State University

“Some modern quality improvement techniques and their computing implications,”
George E. P. Box, University of Wisconsin

Special invited discussion, Gerald J. Hahn, GE CRD and Gregory B. Hudak, Scientific
Computing Associates




FRIDAY, APRIL 21, 1988

10:15 a.m. - 12:15 p.m. . Room 5
Supercomputing, Design of Experiments and Bayesian Analysis, Part [I, Chaired by:
Prem K. Goel, Ohio State University

“Supercomputer-aided design,” Jerry Sacks, University of Illinois

“A Bayesian approach to the design and analysis of computer experiments,” Toby Mitchell,
Oak Ridge National Lab

10:15 a.m. - 12:15 p.m. Room 3
Neural Networks, Chaired by: Muhammed Habib, University of North Carolina

“Statistical learning networks: a unifying view,” Andrew R. Barron, University of Illinois
and Roger L. Barron, Barron Associates, Inc.

“Stochastic models of neuronal behavior,” Gopinath Kallianpur, University of North
Carolina

“Inference for stochastic models for neural networks,” Muhammed Habib, University of
North Carolina and A. Thavaneswaran, Temple University

10:15 a.m. - 12:15 p.m. Room 2

Contributed Papers: Applications II, Chaired by: Brian Woodruff, Air Force Office of
Scientific Research

“Space Balls! or estimating diameter distributions of polystyrene microspheres,”
Susannah Schiller and Charles Hagwood, National Bureau of Standards

“Comparing sample reuse methods at FHA - an empirical approach,” Thomas N. Herzog,
U. S. Department of Housing and Urban Development

“Maximum entropy and its application to linguistic diversity,” R. K. Jain, Memorial
University of Newfoundland

“Encoding and processing of Chinese language - a statistical structural approach,”
Chaiho C. Wang, George Washington University

“The elimination of quantization bias using dither,” Martin J. Garbo and
Douglas M. Dreher, Hughes Aircraft Company

10:15 a.m. - 12:15 p.m. Room D
Contributed Papers: Image Processing II, Chaired by: Refik Soyer, George Washington
University

“Maximum entropy and the nearly black image,” lain Johnstone, Stanford University and
David Donoho, University of California, Berkeley

“A probabilistic approach to range image description,” Arun Sood, George Mason University
and E. Al-Hujazi, Wayne State University

[
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“An empirical Bayes decision rule of two-class pattern recognition for one-dimensional
parametric distributions,” Tze Fen Li, Rutgers University

“Statistical modeling of a priori information for image processing problems,” Z. Liang, Duke
University Medical Center

“Advanced statistical computations improve image processing applications, Bobby Saffari,
Generex Corporation

10:15 a.m. - 12:15 p.m. Room 1

Contributed Papers: Simulation I, Chaired by: Bill DuMouchel, BBN

“On comparative accuracy of multivariate nonnormal random number generators,”
Lynne K. Edwards, University of Minnesota

“Bayesian analysis using Monte Carlo integration: an effective methodology for handling
some difficult problems in statistical analysis,” Leland Stewart, Lockheed Research
Laboratory

“A squeeze method for generating exponential power variates,” Dean M. Young, Baylor
University

“Mixture experiments and fractional factorials used to tailor large-scale computer
simulation,” T.K. Gardenier, TKG Consultants, Ltd.

“Simulating stationary Gaussian ARMA time series,” Terry J. Woodfield, SAS Institute,
Inc.

2:00 p.m. - 4:00 p.m. Room 6

Tales of the Unexpected: Successful Interdisciplinary Research, Chaired by: Sallie McNulty,
Kansas State University

“Some statistical problems in meteorology,” Grace Wahba, University of Wisconsin

“Modeling parallelism, an interdisciplinary approach,” Elizabeth Unger, Kansas State
University

“Mice, rain forests and finches: experiences collaborating with biologists,” Douglas Nychka,
North Carolina State University

Discussion: Jerome Sacks, University of Illinois




FRIDAY, APRIL 22, 1988

2:00 p.m. - 4:00 p.m. Room §
Density Estimation and Smoothing, Chaired by: David Scott, Rice University

“XploRe: computing environment for exploratory regression and density estimation
methods,” Wolfgang Hardle, University of Bonn

“Curve estimation with applications to mapping and risk decomposition,” Michael Tarter,
University of California, Berkeley

“Interactive multivariate density estimation in the S package,” David Scott, Rice
University

2:00 p.m. - 4:00 p.m. Room 3
Object Oriented Programming, Chaired by: Werner Stuetzle, University of Washington

“Object oriented programming: a tutorial,” Wayne Oldford, University of Waterloo

“An object oriented toolkit for plotting and interface construction,” Robert Young,
Schiumburger, Palo Alto Research Center

“An outline of Arizona,” John MacDonald, University of Washington

2:00 p.m. - 4:00 p.m. Room 2
Contributed Papers: Numerical Methods, Chaired by: Ariela Sofer, George Mason
University

“A theorgy of quadrature in applied probability: a fast algorithmic approach,” Allen Don,
Long Island University

“Higher order functions in numerical programming,” David Gladstein, ICAD

“A numerical comparison of EM and quasi-Newton type algorithms for finding MLE’s for a
mixture of normal distributions,” Richard J. Hathaway, John W. Davenport and Margaret
Anne Pierce, Georgia Southern College

“Numerical algorithms for exact calculations of early stopping probabilities in one-sample
clinical trials with censored exponential responses,” Brenda MacGibbon, Concordia
University, Susan Groshen, University of Southern California and Jean-Guy Levreault,
University of Montreal

“An application of quasi-Newton methods in parametric empirical Bayes calculations,”
David Scott, Concordia University




FRIDAY, APRIL 22, 1988

2:00 p.m. - 4:00 p.m. i Room D
Contributed Papers: Bayesian Methods, Chaired by: William F. Eddy, Carnegie-Mellon
University

“Approaches for empirical Bayes confidence intervals with application to exponential scale
parameters,” Alan E. Gelfand and Bradley P. Carlin, University of Connecticut

“A data analysis and Bayesian framework for errors-in-variables,” John H. Herbert,
Department of Energy

“Bayesian diagnostics for almost any model,” Robert E. Weiss, University of Minnesota

“An iterative Bayes method for classifying multivariate observations,” Duane E. Wolting,
Acrojet Tech Systems Company

“A Bayesian model of information conbination from noisy sensors,” G. Anandalingam,
University of Pennsylvania

2:00 p.m. - 4:00 p.m. Room 1
Contributed Papers: Expert Systems in Statistics: Chaired by Khalid Abouri, George
Washington University

“Inside a statistical expert system: implementation of the ESTES expert system,”
Paula Hietala, University of Tampere, Finland

“Knowledge-based project management: work effort estimation,” Vijay Kanabar,
University of Winnipeg

“Combining knowledge acquisition and classical statistical techniques in the development of
a veterinary medical expert system,” Mary McLeish, University of Guelph

“The effect of measurement error in a machine learning system,” David L. Rumpf and
Mieczyslaw M. Kokar, Northeastern University

“An expert system for prescribing statistical tests of non-parametric and simple parametric
designs,” Gary Tubb, University of South Florida

6:00 p.m. - 7:00 p.m. Ballroom
Cash Bar
7:00 p.m. - 9:30 p.m. Ballroom

Banquet, Live Entertainment (fee event)
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8:30 a..m. - 10:30 a.m. Room 6
Computational Aspects of Simulated Annealing, Chaired by: Mark E. Johnson, Los Alamos
National Lab

“Computational experience with simulated annealing,” Daniel G. Brooks and
William A. Verdini, Arizona State University

“Simulated annealing in optimal design construction,” Ruth K. Meyer, St. Cloud State
University and Christopher J. Nachtsheim, University of Minnesota

“A simulated annealing approach to mapping DNA,” Larry Goldstein and
Michael J. Waterman, University of Southern California

8:30 a.m. - 10:30 a.m. Room §
Dynamical High Interaction Graphics, Chaired by: Paul Tukey, Bellcore

“Determining properties of minimal spanning trees by local sampling,” Allen McIntosh,
Bellcore and William Eddy, Carnegie-Mellon University

“Data animation,” Rick Becker, AT&T Bell Labs and Paul Tukey, Bellcore

o

“Dimensionality constraints on projection and section views of higher dimensional loci,”
George Furnas, Bellcore

8:30a.m. - 10:30 a.m Room 3
Contributed Papers: Statistical Methods III, Chaired by: Thomas Maszuchi,
George Washington University

“Simultaneous confidence intervals in the general linear model,” Jason C. Hsu,
Ohio State University

“Empirical likelihood ratio confidence tegions,” Art Owen, Stanford University

“An approximate confidence interval for the optimal number of mammography x-ray units
in the Dallas-Fort Worth metropolitan area,” Roger W. Peck, University of Rhode Island

“Optimizing linear functions of random variables having a joint multinomial or multivariate
normal distribution,” Josephina P. de los Reyes, University of Akron

“On covariances of marginally adjusted data,” James S. Weber, Roosevelt University

8:30 a.m. - 10:30 a.m. Room 2
Contributed Papers: Simulation II, Chaired by : Robert Jernigan, American University

“SIMDAT and SIMEST: differences and convergences,” James R. Thompson, Rice
University .

“Simulation and stochastic modeling for the spatial allocation of multi-categorical
resoutces,” Richard S. Segall, University of Lowell
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“Robustness study of some random variate generators,” Lih-Yuan Deng, Memphis State
University .

“Testing multiprocessing random number generators,” Mark J. Durst, Lawrence Livermore
National Laboratory

“An approach for generations of two variable sets with a specified correlation and first and
second sample moments,” Mark Eakin and Henry D. Crockett, University of Texas at
Arlington

8:30 a.m. - 10:30 a.m. Room D

Contributed Papers: Biostatistics Applications, Chaired by: Nancy Flournoy, National
Science Foundation

“An algorithm to identify changes in hormone patterns,” Morton B. Brown, Fred J. Karsch
and Benoit Malpaux, University of Michigan

“Applying microcomputer techniques to multiple cause of death data: from magnetic tape
to artificial intelligence,” Giles Crane, New Jersey State Department of Health

“Spline estimation of death density using census and vital statistics data,” John J. Hsieh,
University of Toronto

“Optimum experimental design for sequential clinical trials,” Richard Simon, National
Cancer Institute

“Bayes estimation of cerebral metabolic rate of glucose in stroke patients,” P. David Wilson,
University of South Florida, S. C. Huang and R. A. Hawkins, UCLA School of Medicine

8:30 a.m. - 10:30 a.m. Room 1

Contributed Papers: Discrete Mathematical Methods, Chaired by: Donald Gants, George
Mason University

“Minimum cost path planning in the random traversability space,” A. Meystel, Drexel
University

“Algorithms to reconstruct a convex set from sample points,” Marc Moore, Ecole
Polytechnique Montreal and McGill University, Y. Lemay, Bell Canada, and
S. Archambault, Ecole Polytechnique Montreal

“On the geometric probability of discrete lines and circular arcs approximating arbitrary
object boundaries,” Chang Y. Choo, Worchester Polytechnic Institute

“Application of orthogonalization procedures to fitting tree-structured models,”
Cynthia O. Siu, The Johns Hopkins University

“Evaluation of functions over lattices,” Michael Conlon, University of Florida




SATURDAY, APRIL 23, 1988

10:45 a.m. - 12:00 noon Room 6
Special Invited Lecture I1I, Chaired by: Sally Howe, National Bureau of Standards

“Visualizing high dimensional spaces,” Thomas Banchoff, Brown University

10:45 a.m. - 12:45 p.m. Room 5
Entropy Methods, Chaired by: Raoul LePage, Michigan State University

“Introduction to relative entropy methods,” John Shore, Entropic Processing Corporation

“Structural covariance matrices and 2-dimensional spectra,” John Burg, Entropic Processing
Corporation

“Matrix completion and determinants,” Charlie Johnson, College of William and Mary
10:45 a.m. - 12:45 p.m. Room 3

Contributed Papers: Information Systems, Databases and Statistics, Chaired by:
Robert Teitel, Teitel Data Services

“Information systems and statistics,” Nancy Flournoy, National Science Foundation
“Is there a need for a statistical knowledge base?” Z. Chen, Louisiana State University

“An alternate methodology for subject database planning,” Craig W. Slinkman, Henry D.
Crockett, and Mark Eakin, University of Texas at Arlington

“A sensitivity analysis of the Herfindal-Hirschman Index,” James R. Knaub, Jr.,
U. S. Department of Energy

"Statistical methods for document retrieval and browsing,” Jan Pedersen, Xerox PARC and
John Tukey and P. K. Halvorsen

10:45 a.m. - 12:45 p.m. Room 2
Contributed Papers: Parallel Computing, Chaired by: Joseph Brandenburg, INTEL
Scientific Computers

“Programming the BBN butterfly parallel processor,” Pierte duPont, BBN Advanced
Computers

“A tool to generate parallel FORTRAN code for the Intel iPSC/2
hypercube,” Carlos Gonzalez, J. Chen and J. Sarma, George Mason University

“All-subsets regression on a hypercube multiprocessor,” Peter Wollan, Michigan
Technological University »

“Multiply twisted N-cubes for multiprocessor faarallel computers,” T.H. Shiau, University of
Missouri, Columbia

“Markov chains arising in collective computation networks with additive noise,”
R.H. Baran, Naval Surface Warfare Center
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SATURDAY, APRIL 23, 1988

10:45 a.m. ~ 12:45 p.m. Room D

Contributed Papers: Density and Function Estimation, Chaired by: Celesta Ball, George
Mason University

“The L, asymptotically optimal kernel estimate,” Luc Devroye, McGill University

“Derivative estimation by polynomial-trigonometric regression,” Paul Speckman, University
of Missouri, Columbia and R.L. Eubank, Southern Methodist University

“A pooled error density estimate for the bootstrap,” Walter Liggett, National Bureau of
Standards

“Efficient algorithms for smoothing spline estimation of functions with or without
discontinuities,” Jyh-Jen Horng Shiau, University of Missouri, Columbia

“On the convergence of variable bandwidth kernel estimators of a density function,”
Ting Yang, University of Cincinnati

10:45 a.m. - 12:45 p.m. Room 1

Contributed Papers: Statistical Methods [V, Chaired by: LeRoy A. Franklin,
Indiana State University

“Stochastic test statistics,” P. Warwick Millar, University of California, Berkeley
“It’s time to stop!,” Hubert Lilliefors, George Washington University

“The effects of heavy tailed distributions on the two sided k-sample Smirnov test,”
Henry D. Crockett and M. M. Whiteside, University of Texas at Arlington

“Performance of several one sample procedures,” David Turner, Utah State University

“Exact power calculation for the chi-square test of two proportions,” Carl E. Pierchala,
Food and Drug Administration




Abstracts

Abstracts are arranged in alphabetical order of the last name of the first author. The first
author may not correspond to the presenter of the paper. Thus in looking up an abstract for a paper,
it may be worthwhile to search under co-authors. In any case, the abstracts are referenced in ihe
author index and may be located by use of the index .
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A Probabilistic Approach to Range Image Description

E. Al-Hujazi
Wayne State University

and

A. K. Sood
George Mason University

In this paper we present an approach for describing range images based on the H (Mean
Curvature) and K (Gaussian Curvature) parameters. Range images are unique in that they directly
approximate the physical surfaces of a real world 3-D scene. H and K are defined from the
fundamental theorems of differential geometry, and provide visible, invariant pixel labels that can be
used to characterize the scene. The sign of H and K can be used to classify each pixel into one of eight
possible surface types. Due to sensitivity of these curvature parameters to noise, the computed HK-
sign map does not directly identify surfaces in the range image. In this paper a probabilistic approach
for the segmentation of the HK-sign map is suggested. The image is modeled as a Markov random
field on a finite lattice. The prior knowledge about the solution is expressed in the form of a Gibbe
probability distribution. This approach allows the integration of the output of a number of modules in
an efficient way. Due to the computational complexity of this approach, a sub-optimal algorithm

using dynamic programming has been developed. The performance of the proposed techniques on a
number of range images will be presented.

Image Analysis of a Turbulent Object Using Fractal Parameters

Amar Ait-Kheddache
North Carolina State University
Electrical and Computer Engineeting Department
Campus Box 7911
Raleigh, NC 27695-7911

The objective of this paper is threefold. First, it describes the use of image processing
techniques for recording and measuring information about pollutant dispersion (smoke). Visual images
of the smoke plume dispersion are used to develop techniques for describing wake processes. Second, a
new model based on fractal concepts is developed to analyze smoke data. The concept of fractals is
introduced for the purpose of giving some qualitative and quantitative interpretation to the transient
flows of the pollutant. The fractals display interesting dynamics and provide an environment for
modeling complex patural phenomena. Third, a theoretical justification aad mathematical methods
are developed for making the concept useful in practice. We have chosen two fractal parameters, the
horizoatal fractal parameter and the vertical fractal parameter to characterize the image data. These
parameters are computed only for the very active regions (turbulent regions) of the phenomenon
(smoke) and they are nonconservative properties. Analysis and testing of the technique have
determined information about which features can be extracted from the image sequences (spatio-
temporal characteristic, coaceatration, velocity...). Some statistical interpretation which support the
resuits are reported. The limitations of the techniques are also addressed. - In summary, the

phenomenon itself, the experimental study and the achieved results using fractals constitute the noveity
of the work.
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Smoothing Data with Correlated Errors _
Naomi Altman

Cornell University

Suppose the dependent variable y is observed with error at a set of design points x on an interval, and
that the mean of y is assumed to be a smooth function of x. Linear nearest neighbors, kernel regression
estimators, and smoothing splines are all examples of techniques for estimating the mean function

which depend on a single smoothing parameter, A, and are linear functions of the data when 2 is fixed.

When the error process is weakly continuous, ther is a non-zero lower bound on the variance of linear
estimators of the mean as the sample size increases on a fixed interval. So the estimators cannot

" converge in any sense to a deterministic function, as they do when the errors are independent.

The standard techniques for selecting smoothing parameters, such a cross-validation and generalized
cross-validation, perform very badly when the errors are correlated. If the sum of the correlations from
zero to infinity is negative, the techniques favor oversmoothing; if the sum is positive, the techniques
favor undersmoothing. However, the selection criteria can be adjusted to incorporate the known effects
of the correlations or the residuals on which the criteria are based can be transformed to eliminate the

effects of correlations.

Estimates of the correlation function based on residuals from a preliminary smooth are shown to be
very Dbiased. Oversmoothing leads to estimates of correlation which are too large, whiler
undersmoothing leads to estimates which are too small. This leads to a negative feed-back effect which

makes iterative techniques inadvisable.

In simulation, the standard selection criteria are shown to behave as predicted by the theory. The
corrected criteria are shown to be very effective when the correlation function is known. Although the
estimates of correlation based on the data are poor, they are shown to be sufficient for correcting the

selection criteria, particuloarly if the signal to noise ratio is small.
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LINEAR PREDICTION OF FAILURE TIMES OF A REPAIRABLE SYSTEM
‘M. Ahsanullah

Rider College Lawrenceville, New Jersey 08648-3099, U. S. A.

ABSTRACT

Suppose we consider a repairable system in which a failed component is replaced
immediately by a component of equal age. On replacement of the component, the
system becomes operational and we assume the repairing time of the component is
negligible. We assume the survival times of the components are independent and
identically distributed.

Let us denote by XO, Xl, Xz, evess. the failure times of the system where Xo- 0.
The time between failures Un = Xn - xn-l n > are non negative random variables.
Let F(t) = Pr (U, < t), for t>0 and F (t) = 1 - F (t).

' We assume that F(t) has a density f(t) with F(0) = 0 and r(t) = £(t)/F(t), for

F (t) > 0. The function r (t) is called hazard rate and R (t) = fg r(u) du is
called the cumulative hazard rate. The hazard rate of the system after repair
1s assumed to be the same as before. Let F_ (t) = Pr(X < t) and f (c) = F;(t).
Then

1-F (x) = F (x) ifn =1
F (x) + F(x), if n=2
and in general,

1 -F (x) = F(x)

n-1
z (R(x)) 1/1!

i=0

l-Fn (x) can be interpreted as the survival time to the nCh failure of the
system given that a failed component ,is replaced by one of equal age and the
repair time is negligible. The density fn (x) of Xn can be written as fn (x) =

£(x). R@E)H™L, n> 1.
(n-1) !

Some distributional properties of the nth survival times are discussed when F
has different life distributions. Various predictions of the sth failure time
X (s>n), based on the first n and as well as on some selected failure times are
obtained. Their expected costs with respect to different cost functions and a
replacement Model, where the system is replaced at a certain failure or failure

time, are computed.
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Fusion and Propagation in Graphical Belief Models
Russell Almond
Harvard University

ABSTRACT

Graphical models are a clear and concise way of describingprobabilistic dependencies among
many variables. Only relationships between variables which share a common hyperedge are modeled,
considerably simplifying both the modeling and the computational tasks. The latter represents
considerable savings, as the direct approach to calculatmg margma* relationships from the components
of a graphical model is computationally expensive, requiring 23 operations for n binary variables.
Graphical models have lately been studied by Pearl [1986a,1986b], Moussouris(1974], and Lauritzen
and Spiegethalter[1987] in the Bayesian case, and Kong{1986a], Shafer, Shenoy, and Meilouli {1986],
and Shenoy and Shafer[1986] in the Belief Function case.

Belief functions are a generalization of probability measures that allow ways to express total
ignorance, Bayesian prior probability distributions, conditional probability distributions (likelihoods),
logical relationships (production rules) and observations. All these diverse types of knowledge can be
combined with a uniform fusion rule, the direct sum operator. Simple procedures can restrict belief
functions to a smaller frame and extend them to a larger frame without adding additional information.
The theory of belief functions is developed by Dempster(1967], Shafer(1976,1982], and Kong{1986a].

By a simple procedure given here and in Kong{1986b], we can transform the model hypergraph
into a {tree of closures}. I present apropagation algorithm from Dempster and Kong [1986) for finding
marginal belief functions from a tree of closures. Each node of the tree of closures is a “‘chunk” of the
original problem; each chunk can be computed independently of all other chunks except its neighbors.
Every node in the tree passes to each of its neighbors a message (expressed as a belief function) that
consists of the local information fused with all of the information that has propagated through the
other branches of the tree. Using this propagation algorithm along with the fusion aigorithm given by
the direct sum operator, we can easily compute marginal beliefs, with substantially less computational
cost than the direct approach. [ have translated this mathematical formalisim into a computer
program and dicuss some examples computed using this procedure.

Key Concepts: Graphical Models, Belief Functions, Bayesian Models, Fusion and Propagation,
Probability in Ezpert Systems, Triangulated Graphs.

Abatract Bibliography

Dempster[1967], ~Upper and Lower Probabilities Induced by a Multivalued Mapping,” Anrnals of
Mathematical Statistics, Vol. 38, 325-339.

Dempster and Kong[1986]). “Uncertain Evidence and Artificial Analysis,”
Harvard University, Department of Statistics.

technical report S-108,
Kong[1986a), “*Multivariar. B.lief Functions and Graphical Models,”” Ph.D. thesis, technical report S-
107, Harvard University, D+p.rtiment of Statistics.

Kong[1986b), *“Construction «f a Tree of Cliques from a Triangulated Graph,” technical report,
Harvard University, Departmnt of Statistics.

Lauritzen and Spiegelhalter’1037], Fast Manipulation of Probabilities with Local Representations--

With Applications to Expert Systems,” technical report R-37-7, Aalborg University, Institute of
Electronic Systems, Denmarck.

34




Moussouris{1974], “Gibbs and Markov Random Systems with Constraints,” Journal of Statistical
Physies, Vol. 10, pp. 11-33. -

Pearl[1986a], ‘“Fusion, Propagation, and Structuring in Belief Networks,” Artificial Intelligence, Vol.
29, pp. 241-288.

- Pearl[1986b), ‘“Markov and Bayes Networks: A Comparison of Two Graphical Representations of

Probabilistic Knowledge,” technical report R-46, University of California at Los Angles, Computer
Science Department.

Shafer[1976], A Mathematical Theory of Evidence, Princeton University Press.

Shafer[1982], ‘‘Belief Functions and Parametric Models,” Journal of the Royal Statistical Society,
Sertes B, Vol. 44, pp. 322-352.

Shafer, Shenoy, and Mellouli(1986], ‘‘Propagating Belief Functions in Quzlitative Markov Trees,”

~ working paper no. 196, University of Kansas, School of Business.

Shenoy and Shafer[1986), ‘‘Propagating Belief Functions with Local Computations,” [EEE Ezpert,
Vol. 1 No. 3, pp. 43-52.

35




A BAYESIAN MODEL OF INFORMATION COMBINATION FROM NOISY SENSORS

G. Anandalingam

Department of Systems
University of Pennsylvania
Philadelphia, PA 19104-6315

A paper to be presented at

The 20th Symposium on the
Interface of Computing Science and Statistics
Reston, Virginia. April 21-23, 1988

ABSTRACT

An important thrust of research in artificial intelligence (AI) has
been the wuse of mulctiple sensors (or experts) for information processing.
The work that falls into this category is often called "Distributed AI".
Researchers worry about the placement of these sensors (choice of experts),
and ways to combine the distributed corpus of knowledge. Parallel, and
somewhat preceding these research thrusts, a number of statisticians have
been working in the area of combining statistical data, and management
scientists have been working on the combination of time-series forecasts.
The main problem in all these studies has been the extraction of weights for
the individual information sources.

In this paper, we use a Bayesian approach to combine information from
distributed sensors. We extend and generalize previous Bayesian analyses to
incorporate noisy information, and lagged sensor responses. In order to do
the latter, we show the connection between the generalized Bayesian model,
and Kalman Filtering in dynamic systems analysis. In all cases, the combined
information is shown to be unbiased (i.e. unaffected by measurement errors
in the sensors) and efficient.

We also examine the case where the sensor error structures are unknown
to the information processor. We set up a Bayesian procedure to learn about
the sensors, and to combine information recursively. The learning feature is
novel for the statistical literature on information combination, but is well
in the spirit of arctificial intelligence research.
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A stochastic extension of Petri Net graph theory
Lisa M. Anneberg
Wayne State University

A Petri net is a bipartite graph, and is heavily utilized for modelling computer hardware and
software (among other items). The two nodes (arcs and places) will each have an associated
probability (of correct operation) and two time values (average time waiting and time elapsed during
function). The probabilities associated with both places and transition can give both the overall

reliabilities of all paths, and each place/transition pair reliability.

A small example net will serve to illustrate this idea, with the asssociated place transition
matrix:
i P(P)p(t1)  P(P1)p(ts)
(#) PxT=| B(PJR(t) P(P2)P(ta)
p(P3)p(ty) P(P3)p(ts)

0.04 0.36
0.06 0.00 |,
0.00 0.54

"o
w
|

where p(P,) = 0.4, p(P,) = 0.6, p(P3) = 0.7, p(t,) = 0.1, and p(t,) = 0.9.

One cannot. however, arrive at total path reliabilities via this matrix because interior arc/place
ptobabilities will be counted twice. For particular place/transition or transition/place pairs, this
matrix shows the proper reliabilities. Each set of reliabilities is useful. The place x transition matrix
can identify the critical place/transition paris that may be pulling a corresponding overall path

reliability quite lower.

Times associated with place/transition pairs can be represented in this fashion (addition
instead of multiplication is used. of course). Again, this identifies critical pairs, but cannot be utilized

to arrive at an overall time unless the double counted interior nodes are accounted for.

A short technical paper will be presented elaborating on these points.
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Identification of Closed Figures

Jeff Banfield

Department of Mathematical Sciences
Montana State University

Adrian Raftery

Department of Statistics
University of Washington

ABSTRACT: A recurring problem in image processing is the recognition and represen-
tation of closed figures. A technique to solve this problem, incorporating several innovative
new ideas, is illustrated by locating ice floes in a LANDSAT image. Using standard image
processing techniques, the image pixels are classified as ice or water and the edge pixels
(those which define the border between ice and water) are identified. The ice floes are then
eroded by the computer to simulate melting the ice. The locations of those edge pixels
which outline a given floe are propagated into the interior of the floe as it melts. This
results an initial clustering of the edge pixels which belong to the larger floes and the elim-
ination of edge pixels from noise and floes smaller than a specified size. A new clustering
criteria, based upon principal curves and maximum likelihood estimation, is used for the
final identification and representation of the floes. '
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MARKOV CHAINS ARISING IN COLLECTIVE COMPUTATION NETWORKS WITH
ADDITIVE NOISE

R. H. Baran
Naval Surface Warfare Center, White Oak (code U23, rm. 2-250),

Silver Spring, MD 20903-5000

Recent progress in the modelling of connectionist ("neural”) networks

gives rise to the expectation that future computing systems will employ
coprocessors in which large numbers of memoryless, ncnlinear processing
units interact through plastic connections. Hopfield has drawn attention
to a class of networks, defined by symmetric interconnections and processing
units with binary-valued outputs, which can compute good (suboptimal)
salutions to difficult constrained optimization and decision problems.
These collective computation networks (CCNs) converge rapidly to stable
states which correspond to local minima of the computational energy, a
bilinear functional of the network state vector. The CCN can be freed from
local minima by the addition of noise to the input of each processing unit
(or “"neuron”). The network state then takes a random walk on a lattice of
2N points, where N is the number of “"neurons”. Ackley, Hinton, and
Sejnowski have suggested that the long term evolution of the state (K)

follows a Boltzmann distribution,

exp(-E, /T)
Pr(K=k) = " . k=0,1,..., 251,

Zexp(’Ek/T)

k

where Ek is the computational energy of the k~th state and T i{s the

“temperature”.

This paper uses a si-cle, explicit algorithm to study the behavior of
"Boltzmann machines” -~aving various configurations and noise distributions.
The two-neucon networx is analyzed {n detail to obtain an expressior. for
the effective temperature. That the result generalizes to larger networks
{s verified by Monte Carlo calculations in which the randomly sampled state

exhibits a distribution that is statistiéally close to the theoretical,
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Statistical Learning Networks: A Unifying View
Andrew R. Barron
Statistics and Electrical and Computer Engineering Departments
Uaiversity of [llinois
and
Roger L. Barron
Barron Associates, Inc.
Stanardsville, Virginia

We trace the history of artificial neural network models from the viewpoint of 25 years of
involvement in the application of these models to curve-fitting problems (involving tegression,
prediction, classification, or guidance and control) in specific projects for government and industry.
Although originally some of these network models were derived from analogies to neurophysiological
systems, the driving force in the development has been practical empirical modeling problems. The
characteristic shared by each of these methods is that estimates of functions of many variables are
obtained by the mathematical composition (interconnection) of many simple relationships.
therefore suggested that the name statistical learning network rather than nesral network more

accurately conveys the nature and purpose of these models.

It is recounted how the advancement of learning network methodologies has depended on
statistical developments (oonparametric smoothing, model selection criteria, asymptotic theory),
information-theoretic developments (universal data compression, complexity minimization), and
computational developments (efficient search techniques for multimodal surfaces) as well as
developments in approximation theory (What classes of functions are approximated by functions
expressed by networks?). We describe the surprising similarities as well as the differences between
learning network models such as fixed polynomial networks (devised by Snyder, Barron et.al. 1964 and
described in Gilstrap 1971), adaptively synthesized networks (developed by Mucciardi 1970, Ivakhnenko
1971, and Barron et.al. 1984), projection pursuit (Friedman and Tukey 1974, Friedman and Stuetsle
1981), and classifiers trained by back-propagation (Rumelhart, Hinton and Williams 1988). A flexible
system of computer programs is being developed to implement these and many other learning network

models according to user specified attributes.

Some approximation theory questions concerning functions represented by networks are
tesolved. A four layer polynomial network of depth 2m+1 and fixed connectivity can uniformly well
approximate any continuous function of m variables on a compact set. Similarly for projection pursuit,
it is known that the theoretical (non-sampling) version approximates any L2 function of m variables
(Jomes 1987). A fundamental statistical question remains: Do estimated networks converge to the
unknown function with high probability as the sample size increases without bound? No consistency ot
rate of convergence results are yet available for any of these learning network estimators.
results (Barron 1987) concerning Bayes estimators for nonparametric smoothing and complexity

minimization show promise for helping resolve some of these consistency questious.
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Interior Point Methods for Linear Programming Problems

Paul T. Boggs

Scientific Computing Division
National Bureau of Standards
Gaithersburg, MD 20899

ABSTRACT

The method of centers was first proposed by Huard for convex nonlinear optimisa-
tion problems. A version of the method was shown to be a polynomial algorithm for the
linear programming problem. Moreover, the order of the polynomial is the same as for
Karmarkar's method. [n this talk, the basic method as applied to linear programmming
is described and a continuous version derived. The continuous version yields trajectories
from any feasible point in the polytope to the solution. The properties, including the defi-
ciencies, of these trajectories are discussed. A modification that overcomes the difficulties
is proposed and analyzed. Finally, an algorithm based on these results is given and some
preliminary numerical results are presented.
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On Some Graphical Representations of Multivariate Data

Masood Bolorforoush
Edward J. Wegman

George Mason University

The paper presents an implementation of some multivariate graphical techniques written in
PASCAL and developed for the IBM-RT. We have a basic implementation of the parallel coordinate
representation together with some enhancements including brushing, windowing, zooming, and
transformations including Box-Cox and standardization. Also included in our package are scatter plot
diagrams which may be linked in split screen to parallel coordinate diagrams. Some related techniques
which we call color histograms and relative siope plots are also implemented.

A MONTE CARLO ASSESSMENT OF CROSS-VALIDATION AND THE C, CRITERION'
FOR MODEL SELECTION IN MULTIPLE LINEAR REGRESSION

Dept of Math. Sciences. Virginia Commonwealth University '

Robert M. Boudreau

For selecting variables or model building in the multiple linear regrll-
sion situation, Mallows C, criterion is relevant when the regressors are
considered fixed. When the regressors are random, then cross-validatior
is more appropriate. Both these methods are often justified on the ][
grounds that they estimate the unobservable conditional prediction me
squared error (PMSE) when predicting new observations using the current
training data set to estimate the parameters. In the fixed case., a
theoretical result is given showing that the C, for a given model is
fact uncorrelated with the training set PMSE. In the case of random
regressors, results of a simulation experiment, with some related
theory, give evidence that cross-validation (counter to intuition) il
also uncorrelated, or at most weakly correlated, with the PMSE for th

data set. I

COMPUTATIONAL EXPERIENCE WITH THE GENERALIZED
SIMULATED ANNEALING ALGORITHM

Daniel G. Brooks William A, Verdini

Arizona State University

Computational results using the generaljized simulated
annealing algorithm are presented. The algorithm is used on
a number of well-known test problems and solution results
are compared to those of other stochastic optimization
procedures. The sensitivity of the rate of convergence to
changes in several algorithm parameters is presented.
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AN ALGORITHM TO IDENTIFY CHANGES IN HORMONE PATTERNS

Morton B. Brown
Department of Biostatistics
The University of Michigan

Ann Arbor, MI 48109-2029

Fred J. Karsch and Benoit Malpaux
Consortium for Research in
Developmental and Reproductive Biology
The University of Michigan

Many hormones are secreted into the blood in a pulsatile manner: f.e.,
in high concentrations at ‘random’ intervals. To study hormone levels,
researchers assay its level in the blood at regularly spaced intervals.
The scatistical problem is to differentiate between changes in stage
(level of the hormone) and observations influenced by a ’'random’ pulse
('noise’). An algorithm is described th.t uses regression-like
statistics computed after deleting the most 'extreme’ observation
combined with a moving variable-length window to identify rises and
declines in hormone level, The deletion of the most 'extreme’
observation and the use of a variable-length window facilitates the
exclusion of 'noisy’ values from the determination of the stage of the
hormone.

Keywords: hormone levels
circadian and annual rhythms
pattern analysis
regression
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BOOTSTRAPPING REGRESSION STRATEGIES

by: David Brownstone
School of Social Sciences
University of California
Irvine, California 92717
Tel: 714-856-6231
Bitnet: "DBROWNSTQUCI®

Applied statisticians rarely estimate multiple regression models with
a single estimator; they follow complex estimation strategies using many
related models, estimators, and diagnostic statistics. Although it is
known that the use of these strategies can create large biases in standard
dispersion measures from the final estimates, there has been very little
work on quantifying these Diases due to the analytic intractability of the
problem. This paper demonstrates the feasibility of using bootstrap
techniques to estimate the sampling distribution of regression estimation
strategies. A number of Monte Carlo experiments are performed using
Ordinary Least Squares on a small S variable regression model. We consider
simple strategies like deleting all variables corresponding to nuisance
parameters with t-statistics less than 2 and then reestimating the model.
These experiments verify that common simple estimation strategies can '
create large biases in standard dispersion estimators, and the magnitude
of these biases depends on both the true model design and estimation
strategy.

The bootstrap methodology can be applied to more realistic, complex
strategies and estimators. We demonstrate this with experiments where
outliers are removed before the models are reestimated. Removing outliers
can either increase or decrease dispersion estimator bias depending on
whether outliers are unusual draws from a well behaved distribution or
"normal” draws from a fat-tailed or contaminated distribution.

The computations for this paper were performed on PC and PC/AT
computers using the GAUSS programming language. On more powerful
workstations, it would be feasible to bootstrap more complex strategies
found in expert regression systems such as AT&T Bell Laboratory’s REX
system. The results of the Monte Carlo experiments performed here strongly
suggest that the biases in parameter dispersion estimators increase with
the complexity of the estimation algorithm. The bootstrap techniques
presented here are the only practical way to generate consistent estimates
of parameter dispersion for c.mplex regression estimation strategies.
Bootstrapping could also be i-corporated into expert systems for multiple
regression models. This would 1reatly improve the reliability of the
dispersion estimates for the inal model produced by these systems.
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Noise Appreciation: Analysing Residuals Using RS/Explore

David A. Bum
Faany L. O'Brien

BBN Software Products Corporation
10 Fawcett Street, Cambridge, Massachusetts

The RS/Explore software is a statistical advisory environment for performing analysis of
general linear models. One goal of data analysis is to find a “model” that adequately describes the
variation in the data. Residual analysis is an invaluable tool in selecting and validating a model. We
will examine how RS/Explore provides a convenient access to traditional and innovative graphical

displays useful in residual analysis.
ROBUSTNESS OF WEIGHTED ESTIMATORS OF LOCATION: A SMALL-SAMPLE STUDY

Gregory Campbell and Richard 1. Shrager
Division of Computer Research and Technology
National Institutes of Health

The problem of location estimation is considered in the context of known as well as
misspecified weights. For the one-sample problem, the studied estimators include weighted analogs of
the mean, the median, the median of Walsh averages, Huber M-estimators and a computer-intensive
procedure which minimizes the weighted sum of the absolute deviations. For estimators which employ
a weighted median, interpolation to improve performance is considered. The estimators are evaluated
by computer simulation with respect to robustness to weight misspecification as well as robustness to
outliers. The Kantorovich inequality provides additional insight concerning the small-sample efficiency

of estimators with misspecified weights.
Neural Petri Nets

N. H. Chamas
Wayne State University

It is shown that Petri nets have been evolved into a powerful tool for analyzing asychronous
concurrent systems. But the task complexity in digital computers is still high in emulating natural
information processing that humans can routinely handle. Billicns of operations in a sequential
machine that may take hours or days may take oanly seconds for the human brain. This work clarifies
the similarity between the neural cell and a Petri net. The similarity will be illustrated by an example.
Figure 1 is & typical neural cell while Figure 2 is a typical Nenura Petri Net (NPN).

A,

- \ Ao,
_‘)q - —-—‘—%/ . ~%
‘ g\/Q' 7-'\.’4'
} Figure 1 % & Figure 2 "

The places and the traasitions in NPN have some properties different from the ptoperties and
transitions in PN. The main difference is that the place in NPN has onle one output and many inputs,
aod the transition in NPN has one input and many outputs. These properties make the NPN place
similar to the soma in the neural cell, the transition similar to the hillock, and the arcs similar to the
axon terminals. New rules oo concurreacy and computation will be illustrated and new approaches will

be proposed.

co——
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APPROACHES FOR EMPIRICAL BAYES CONFIDENCE INTERVALS
WITH APPLICATION TO EXPONENTIAL SCALE PARAMETERS

Bradlev P. Carlin and Alan E. Gelfand
University of Connecticut

ABSTRACT

Parametric empirical Baves methods of point estimation date to the landmark paper
of Jumes and Stein (1961). Interval estimation through paramctric cmpirical Baves
techniques has a somewhat shorter history, which is summarized in the recent paper of
Laird and Louis (1987). In the i.1.d. exchangeable case, onc obtains a “naive” EB con-
fidence interval by simply taking appropriate percentiles of the estimated posterior dis-
tribution of the parameter, where the estimation of the prior parameters
(“hyperparameters”) is accomplished through the marginal distribution of the data.
Unfortunately, these “naive” intervals tend to be too short, since they fail to account for
the variability in the estimation of the hvperparameters. That is, they don’t attain the
desired coverage probability, both in the classical scnse and in the “EB” sense dcfined in
Morris (1983).

In this paper we consider two methods for developing EB intervals which attempt to
correct this deficiency in the naive intervals. The (irst is a “bias corrected naive” method
inspired by Efron (1987). Simply put. this method adjusts the naive intervals using tail
areas determined by the paramctric structure of the model and the data. [n certain cases
thesc adjusted tail arcas can be found using only a simple rootfinding algorithm; in more
complicated scttings one likely needs to bootstrap, as suggested by Efron. The second
method addresses tranformations of the bootstrap obsecrvations to match a specified
hvperprior Baves solution. In this context we clarify the nature of Laird and Louis
Tvpe {11 parametric bootstrap.

To compare the four types of EB intervals (naive. bias-corrccted naive, Laird and
Louis, and hyperprior matched) we compute expected “truc” tail areas and “true” interval
lengths (as developed in Laird and Louis), as well as simulated coverage probabilitics
and interval lengths. This is done illustratively in the context of confidence intervals for
a vector of exponential scale parameters.
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INFERENCE TECHNIQUES FOR A CLASS OF EXPONENTIAL TIME SERIES

V. Chandrasekar and P.J. Brockwell

Colorado State University

This research has been motivated by the need to study meteorological radar
Signals. The power received by a radar backscattered from randomly position and
moving targets is a time series with exponential margional distributions.
Moreover the signals are observed at two polarizations states of the transmitted
wave are correlated. The observations are made alternating between the
polarization states and as a result we have missing samples at any polarization.

In this paper we discuss the inference problems associated with the above
described radar signals. The radar signals are obtained from a multivariate
complex guassian series. We discuss different inference schemes in the context
of applicability in real time implementation for radar systems. Time series data
collected using radar observations of rainfall are used to compare against model

results.
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IS THERE A NEED FOR STATISTICAL KNOWLEDGE BASE?

(Abstract)

Z. Chen,
P. O. Box 22236, LSU,

Baton Rouge, LA 70893

Statistical knowledge base! This means to explicitly store statistical knowledge
in the knowledge base. Although statistics has long been involved in abductive rea-
soning (since MYCIN), the involvement of statistics in knowledge engineering is very
limited, and it is almost around the use of Bayes's theorem. The coming of statistical
knowledge base will make statistics the first order citizen in the research of knowledge

engineering. But is there a need for such a new concept?

In this paper we argue that this kind of need does exist. First of all, statistical
knowledge exists at its own right, it plays not only a role of measurement. Secondly,
making statistics as the first order citizen means the whole set of matured statistic
methods (eg. multivariate analysis) can be used in knowledge engineering. Finally,
the method of abductive reasoning itself can be enriched: for instance, searching in

abduction will no longer be restricted to a bottom-up manner.

In the rest of this paper we discuss the possible interface of statistical knowledge
base and current existing statistics software. We also compare the similarity and

difference between statistical database and statistical knowledge base.
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EFFICIENT DATA SENSITIVITY COMPUTATION FOR MAXIMUM LIKELIHOOD ESTIMATION

Daniel C. Chin and James C. Spall

The Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road
Laurel, MD 20707

Abstract

A computational procedure and numerical results are presented for studying
the effect of outliers or other anomalous data. This procedure is based on a
first order approximation relying on the implicit function theorem, and involves
matrix operations and tensor (Kronecker) algebra. The approximation yields a
¢closed form expression; in contrdst, the calculation of the MLE depends on
iterative numerical methods such as Newton-Raphson, steepest descent, or
scoring., The approximation is generally much more efficient than a
straightforward computation of the MLE via such numerical methods. We will
present the results of a numerical study that illustrate the procedure on a
multivariate signal-plus-noise problem with non~identically distributed noise.
Such signal-plus-noise estimation problems arise in many settings (e.g., Kalman
filter model estimation, dose response curve estimation, etc.). In the
numerical study we compared this procedure with the scoring method for finding
MLES. In a moderate size problem we found that the procedure was more than 25
times faster; greater computational savings would be expected in a larger
dimensional problem.

-

Keywords and phrases: Computational Stochastic Modeling, MLE approximation,
numerical methods, simulation study, outliers, signal-plus-noise models.
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On the Geometric Probability of Discrete Lines and Circular
Arcs Approximating Arbitrary Object Boundaries

Chang Y. Choo
Department of Electrical Engineering
Worcester Polytechnic Institute
Worcester, MA 01609

Grid-based line data representation such as chain codes and polycurve codes is an

efficient scheme used for representing arbitrary object boundaries in the areas of image

processing and pattern recognition. Grid-based schemes of representing object boun-
daries consist of three processes. First, a square grid of proper size is overlaid onto the
boundaries. Second, connected straight-line and circular-arc segments, each of which is
predefined with respect to grid points, are searched that best fit ail the grid intersection
points. Finally, according to predetermined rules, each segment is mapped into an integer
and stored in a computer. The number of discrete lines and circular-arc segments used as
approximators increases rapidly as the size of "quantization window", in which one curve
fitting is done, increases.

This paper addresses the issue of calculating the probability of the line and
circular-arc segments based on a model of random line drawing within a quantization
window. The model assumes that the original line drawing inside a quantization window
is a random circular arc. According to a quantization algorithm, the probability that each
line or circular-arc segment will be used for approximating the random line drawing is
calculated. The analytical results are verified by various experiments involving real
object boundaries and map contour lines. The results of this paper may be used to design
variable-length codes such as Huffman codes.




Computing Extended Maximum Likelihood Estimates
in
Generalized Linear Models

by

Douglas B. Clarkson
IMSL, Inc.

Robert I. Jennrich
University of California, Los Angeles

Abstract

Concern here is with computing the “extended maximum likelihood” estimates .
of Haberman (1974) in which one or more parameter estimates is infinite at the
supremum of the likelihood. Theorems justifying the computation of these esti-
mates are presented in a general context and efficient algorithms for detecting and
computing such estimates in the context of generalized linear models are given.
Examples illustrating the use of these algorithms are presented.

Evaluation of Functions over Lattices

Michael Conlon
Department of Statistics, University of Florida, Gainesville, Fl

Consider the problem of evaluating the sum of a function of two ar-
guments over a subset of a lattice of argument values. A new recur-
sive algorithm has been developed which performs these evaluations
at considerable savings when portions of the lattice can be identified
as contributing little to the overall sum. The algorithm takes full ad-
vantage of adjacency relationships. Each function evaluation after the
first can be performed using prior knowledge of an adjacent function
value on the lattice. The algorithm has been applied to computing
functionals of estimators for comparative binomial experiments. Ex-
act evaluation of expected value, variance, and other functionals can
be computed from basic principles using the new algorithm in one
order of magnitude less time than performing a simulation.
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Extracting Records from New Jersey’s Multiple Cause of Death Files

Giles Crane .

New Jersey Department of Health

A simple microcomputer system has been developed using of-the-shelf components which
permits local access in an acceptable time frame to several years of New Jersey multiple cause of death
data assembled and distributed by the National Center for Health Statistics. The system includes
bhardware and software and illustrates a trade-off between speed and specificity of access to
approximately 70,000 records per calendar year. Applications to the epidemio{ogy of drowning and
sickle cell anaemia will be discussed with timing information and order of maguitude rules for similar
investigations. The numbers of causes per person in New Jersey will be summatized in several tables.
If time permits, the further analysis of abetracts from this data will be illustrated by three short
examples: conventional statistical analysis, a computationally intensive method, and an application of

artificial intelligence technique.

The Effects of Heavy Tailed Distributions oa the Two-Sided K-Sample Test

Henry D. Crockett
M. M. Whiteside

University of Texas at Arlington
This paper presents the problem that the k-sample Smirnov test has in diseriminating the
ranking of samples from heavy tailed probability distributions. This is accomplished by performing a
multifactored simulation on samples from univariate Cauchy and double exponential distributions.
The test results for 1000 tests are presented for each of seven levels of variance, and five scalar offsets
foe both distributions.

Recent Progress in Algorithma and Architectures
for Time Series Analysis

George Cybenko
Department of Computer Science
Tufts University
Medford, MA 02133

617-381-3214

ABSTRACT

This talk will survey research n the 1980's on fast algorithms and computer architec-
tures for time series analysws. »specially from the signal processing perspective. A combi-
nation of novel algorithms 1nd new technologies ire makiag complex computations not
only feasible but performable in real-time by the early 1990’s. The talk focuses on tech-
niques involving matrix problems such as eigenvalue, singular value and structured linear
system solving. This progress has had added powerful new tools to the time series
analyst’s collectioa of techniques.
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Chernoff Faces: A PC Implementation
bv
Mohammad Dadashzadeh, Ph.D.
Department of Management Science & Information Systems
Universitv of Detroit
4001 W. Mc Nichols

Detroit. MI 48221
(313) 927-1237

ABSTRACT

The Chernaff faces is a well-known method for graphical representation of
multivariate data in which every multivariate observation is visualized
as a computer-drawn face. As in other techniques for graphical
representation of multivariate data, the objective is to assist the
investigator in gquickly comprehending relevant information in order to
apoly apprapriate statistical analysis,. [n this paper we present a
flexible implementaticn of Cherrnoff faces an the IBM PC. The program is
written in BA3IC and the faces are drawn on the [IBM PC’s color/graphics
zcreen. Qur contributian by this flexible FC impolementation of Cherraoff
faces is to make a -~s3<ner useful toal more readilv accessible to the

statisticians for 2«z=-17ertation ara possible rafinement.
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A Numerical Comparison of EM and Quasi-Newton Type Algorithms
for Finding MLE’'s for a Mixture of Normal Distributions

John W. Davenport
Margaret Anne Pierce
Richard J. Hathaway

Georgis Southern College

Calculating maximum likelihood estimates for & mixture of normal
distributions is one of the most computationally intensive problems in parametric
estimation. Maximizing the corresponding likelihood function is complicated by
singularities snd numerous spurious maximizers. Currently the most popular
technique for finding the particular (local) meximizer of the likelihood function that
has good estimation properties is the EM (Expectation Maximization) algorithm.
While this iterative algorithm is extremely reliable and usually finds the “good™
meaximizer from most reagonable initial guesses, it is very slow in cases where the
overlap between component normal distributions is great. Another approsch, which
is faster though thought to be less reliable, is to directly maximize the likelihood
function using a (locally) fast iterative algorithm based on some variant of Newton’s
method. The disadvantage with these quasi-Newton methods is that sometimes the
estimate obtained is very dependent on the initial guess used. This paper presents
some preliminary numerical results indicating the relative strengths and weaknesses
of the EM and quasi-Newton approaches found by testing several methods on a
variety of mixture estimation problems. Comparisons made include the
computational efficiency and the reliability of the approaches tested. The ultimate
goal of this research is to learn how the two basic approaches can be hybridized in

order to achieve a method that is both quickly convergent and reliable.
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OPTINIZING LINEAR FUNCTIONS OF RANDOM VARIABLES
HAVING A JOINT MULTINOMIAL OR MULTIVARIATE NORMAL DISTRIBUTION

Abstract
by
JOSEFINA P. DE LOS REYES

A computer method to find vectors s that minimize

r
G(s) = 121 ¢y8, (c,>0 constants) subject to Piv s (1=1, ..., 7))
> l-a (D<s<l) where Vir eees Vo bave a joint multipomial dig:iribue

tion wi:i: parameters n, Pyr --e» Py (’1>°' Py* ... * P " 1) is
obzaized by solving the corresponding optimization problem through
the usual normal approximation. Thus vectors x are sought that

r
migimize F(x) = ] b,x, (b, >0 constasts) subject to P{x,<x,(1=1,...,r)}
VT L PR By 154
- ‘r(x1'°13)11" where Xqs ecer Xg have a joint (degenerate)
multivariste normal distribution with E(xy) = 0, Var(xi) =1,

Covixyixy) = B,y = =(pp (3-p) (1-p72Y .
The normal probability integral °r(xi'°1j) is evaluated numer-
ically using known computer quadrature codes as (a) one integral over
e simplex S, (b) linear combination o0f integralis over multidimensioral
right trisngles callec "plane orthoschemes," or (¢) linear combination
of iptegrals over multidimensional rectangular dozzins.
The optimization of G and T is accomplished using binomial
<ables and a bisection method for ¥ = 2. A known nonlinear progTam
witk the rume-ical quadrature codes for er(x:.:ij) works well for
r = 3, For r > 4, the many evaluations ol °r(xi'°::) required by
the optizization routine make tbe solution dilficult and expeasive

while theorezicallr sizple and feasible. 11z this regarc, tae

approximazion €_(%_,c,,) = ¢(x.)* ... ~e{x_) ~ (r-1), waeTe &(x)

18 the univarizte stancard porma.l iztegral, if spown to be accuTale

to witoin z.0CS Zor velues ol x, such that ¢_(x..z, ) 2 C.9C iZ

3
X, = X, pi = % . Fer e. = ,.. = c_ = 1, the reguired probabilily

- - -

vectors x mizizizing I are tabtled and related eIrrcr cuirves are

grapped %oz 3 < = < 3C.




Robustness Study of Some Random Variate Generators

LIH-YUAN DENG

Department of Mathematical Sciences
Memphis State University

‘emphis, TN 38152

ABSTRACT

Empirical study using computer-generated random numbers have been widely used
where the mathematics of analyzing a statistical procedure become intractable.

There are several generating methods to produce a random sequence with the given
distribution. Most of the methods are based on the generation of independent variate from
a uniform random distribution. Comparison of the different generating methods usually is
done under the criterion of "efficiency”. With the wide availability of the mini-, micro- and
personal computers, the cost of computing is reducing dramatically. We will adopt a new
criterion of "robustness” to compare the performance of different generating schemes.

They are two basic techniques for generating variates from U(0,1): the congruential
methods and feedback shift register methods. None of these is known to generate a "true”
random sequence. In this paper, using beta random variate generating methods as an
example, we will compare the performances of "robustness” of several generators. It is
shown that some methods will perform poorly in the sense that it will quite differ from the
specified distribution whern the unifofm gerterator fails "slightly”.

Similar study has teen done for compa'ring different generating methods of normal,
gamma ... distributions. The framework of analytical and empirical comparisons will also

be discussed.




Compression of Image Data
Using Arithmetic Coding

by

Ahmed Desoky and Thomas Klein

University of Louisville
Louisville, Kentucky 40292 ﬂ

Abstract

Arithmetic Coding has been proposed as being more superior in most
respects than the Huffman method. This paper examines Arithmetic Coding as a
possible compression technique to reduce storage requirements of image data.
Arithmetic Coding models are presented along with their performance in
specific applications. Quality measures are discussed in tems of a
practical image storage and retrieval scheme.

Summary

As image processing projects become more common on personal computers a
need arises to reduce image storage requirements. As an example, the Univer-
gity of Louisville Medical School has a lab which produces dozens of images
for analysis daily, each image consuming over 1/2 MByte -- enough data to
fill a standard PC hard-disk every week. Only recently have coding
techniques existed to reduce this burden. These methods include relative
encoding, statistical encoding, tree-based encoders and the aforementioned
Huffman coder.

Arithmetic Coding represents a message as an interval of real numbers
between 0 and 1. The longer the message, the smaller the interval needed to
represent it, and thus the more bits needed to specify the interval. An
individual symbol of the message reduces the size of the interval by an
amount determined by its probability of occurrence, with a more likely symbol
reducing the range by less than an unlikely one, and consequently adding
fewer bits to the message.

Both the encoder and decoder know (or can generate) the probabilities
nf occurrences of the various symbols, and also that the initial range is
[0,1). With this in mind, the decoder can deduce the final symbol in the
message by the ranygc specified, then work backward to reveal the entire
message.

In practice, several factors make implementation of this seemingly
simple technique less than trivial. Underflow and overflow propensities and
overheads caused by message terminators and word-length constraints affect
the performance and efficiency of the method. Minimization of these problems
requires careful and tedious attention to detail.

The problem of image compression is, in general, very important and
lacks unique solutions. Arithmetic Coding, though displaying admirable
performance characteristics, appears to be less than an accepted method. A
final goal of this paper would then be to examine Arithmetic Coding in detail
sufficient to appreciate its effective uses and exposs its inherent
limitations.
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AN L1 ASYMPTOTICALLY OPTIMAL KERNEL ESTIMATE

Luc Devroye
School of Computer Science
McGill University

ABSTRACT

Let f,4; be the Parzen-Rosenblatt kernel estimate of a density f on
the real line, based upon a sample of n iid random variables drawn
from f, and with smoothing factor A depending upon the data. Among
other things, we study a fully "automatic" method for picking H such
that for a large class of densities, and for any fixed >0,

, E([Ifa=f 1)
lim sup
o= EGf fIfm=f 1)

S 1+ as n—oo ,

where f,, is the kemel estimate with smoothing factor A. The H is
obtained simply by minimizing I |fnh=8nn | where g, is a kernel esti-
mate with a carefully picked kernel depending upon € and the kemnel of
S np oOnly.

Keywords and phrases.

Density estimation. Asymptotic optimality. Nonparametric estimation. Strong conver-
gence. Kernel estimate. Automatic choice of the smoothing factor.

AMS 1980 Subject Classifications.
62G0S, 62H99, 62G20.

Author’'s address: School of Computer Science, McGill University, 80S Sherbrooke .Street
West, Montreal, Canada H3A 2K6.
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A THFORY OF QUADRATURE IN APPLIED PROBABILITY:
A Fast Algorithmic Approach
Allen Don, Ph.D

Computer Science Department
Long Island University
Brookville, New York

The integral representation of the moments of a
useful class ~f probability density functions is cast in
a canonical form in terms of Gauss-Laguerre quadrature.
This transforms the continuous integration Into a sum of
discrete terms, effectively removing the integral sign
and exposing the parameters to numerical investigations.
This allows moments from data to be related to the
unknown parameters via a system of non-linear equations.
This system is easily and quickly solved for the unknown
parameters by any of the numerous non-linear equation
ilgorithms available for personal computers and main-
frames. In addition, the factorials and gamma functions
found in closed form theoretical moment expressions and
in density functions are discretized in the same manner,
enabling unknown parameters within the arguments of the
gamma to be included in numerical searches. A dominant
ratios method is introduced for determining initial
conditions for the system of non-linear equations to
overcome the notable lack of convergence found in non-
linear system algorithms when initial conditions are not
well-chosen. The notion of finite interval guadrature
L2ads to a correction factor that, with repeated
integration-by-parts, becomes an accurate representation
of truncated moments with the guadrature terms vanishing.
The theory is demonstrated by application to reliability
problems, pr:oviding a fast algorithmic avproach rather
than the wusw.3. 3Jraphical approach to parameter
identificasi ~ of density functions hoth for truncated
and for .. ara.

.
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Additive Principal Components: A method for estimating
equations with small variance from multivariate data
Deborah Donnell
Bell Communications Research

Additive Principal Components are a generalization of linear principal components, where the
usual linear function, g;X;, defining the linear principal component, 3" ,4,X;, is replaced by a possibly
non-linear function, ¢,(X;), to form an additive principal component Y ;4,(X;). The analogy to the
smallest linear principal conponent is investigated. The functions &; can be estimated by iterative
application of a scatterplot smooth. This algorithm is equivalent to a power method of estimating

eigenfunctions.

The smallest additive principal components describe nonlinear structure in a high dimensional
space. Consequently it is difficult to interpret the estimated functions in terms that are meaningful for
the data analyst. For the additive principal component, the task of interpretation is almost intractable
without tools for real time graphical interaction. With these tools, a pleasingly direct method for

interpretation of the functions in terms of the original variables is possible.

The additive principal component will be defined and the estimation algorithm described. The
graphical methodology necessary for interpretation of the results will then be described with the aid of

real examples.
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MAXIMUM ENTROPY AND THE NEARLY BLACK IMAGE

David Donoho
University of California at Berkeley
and
lain Johnstone
Stanford University

The maximum entropy estimation principle has been used to derive a non-linear image
restoration method intended for use when it is known that the underlying scene is necessarily non-
negative. It has been used with success in fields ranging from radio astronomy to spectroscopy. Maay
of the successful applications have occurred in settings where the scene is positive on s sparse set and is
otherwise mostly zero (“black”). Tais paper begins a quantitative comparison of the maximum entro
method with some other positivity-preserving competitors in some idealised models using a m o
squared error criterion. The simplest situation is that of a “signal plus noise” model. Campuuo:‘n-f
estimation methods over a class of “nearly black” images can be cast as a restricted minimax roblex:
Tl‘:e. worst case mean squared error (MSE) for the maximum entropy method, as well as the bezchmuk
minimax MSE must be computed numerically for the fractions of non-black pixels of main interest
here. Application of some decision theory significantly reduces the complexity of the necessary
computation. It turns out that MEM does indeed make significant gains over the best linear estimator
but tlfat it does not get close to the minimax bound. Indeed, a minimum L1 method, obtained by'
replacx-ng the entropy functional by the L1 norm performs significantly better numerically. These
numerical results are confirmed by an asympiotic analysis that matches the numerics almost exactly at
the ?mall non-black fractions at which the computational cost becomes unmanageable. Time
permitting, some conjectures concerning the extension of these results to the more complex settings of
more general inverse problems will be mentioned.

The Elimination of Quantization Bias Using Dither
Douglas M. Oreher and Martin J. Garbo
HUGHES AIRCRAFT COMPANY
ABSTRACT

This paper presents a method for recovering the decimal precision of a
non-observable variable that has been quantized. The technique involves
the addition of a random variate (dither) from a uniform distribution
to the variable prior to quantization. It then shows the conditions
under which the expectation of the dithered quantization function
equals the value of the variable in question. An expression for the
variance of the dithered quantization function is also derived. The
results are then generalized to the multiple-quantization case.
Examples involving computer communication are presented which show the
application of this technique to reduce the magnitude of bias error
caused by roundoff.

61




GRAPHICAL REPRESENTATIONS OF MAIN EFFECTS AND INTERACTION EFFECTS IN A
POLYNOMIAL REGRESSION ON SEVERAL PREDICTORS.

William DuMouchel
BBN Software Products Corporation

The table of coefficients from a polynomial regression analysis having several predictors is hard
to interpret because its focus is on the terms in the fitted equation, rather than on the variables used to
define those terms. Methods for graphically comparing the effects of each predictor to each other and
to the residuals will be introduced and discussed. The techniques are easy to implement and to
interpret, and have been generalized to provide graphical summaries of interaction effects.

RECURSIVE METHODS IN TIME-SERIES ANALYSIS

b§ Quang Phuc Duong

Management Sciences Consulting - Bell Canada, Montreal, Canada

ABSTRACT

Recursive methods have always played an important role in the analysis of
Time-Series data, and that for all three main stages of the modeling

exercise: identification, estimation and prediction. In addition to the
well-known Levinson-Durbin and Kalman Filter algorithms, recent developments,
mostly in the field of Control Engineering, have been useful in obtaining
efficient estimation methods for the general class of ARMA models through the
so-called Innovation approach. This paper reviews the main ideas behind these
asethods, and then focuses on the problem of estimating the parameters of a
Moving Average process; some new concepts are introduced, and it i{s shown that
the resulting algorithm parallels that of the Levison-Durbin algorithm. Other
important applications of the algorithm in Time-Series Analysis and other

statistical fields are also briefly discussed.

Keywords: Recursive Algorithms Levinson-Durbin algorithm; Iannovation Process;

spectral Density; Log Autocorrelation.
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TESTING MULTIPROCESSING RANDOM NUMBER GENERATORS

Mark J. Durst
Lawrence Livermore National Laboratory

Standard system software on current multiprocessing computers generates pseudo-random
oumbers which are not reproducible; i.e., different runs will produce different aumbers. To preserve
reproducibility, multiprocessing random number generators (RNG's) have been proposed. Such
generators provide many streams, each of which consists of the numbers to be used by a specific task.
These streams should appear individually to be i.i.d. U[0,1], and they should appear to be mutually
independent. Suggestions for such generators include deterministically splitting the sequence of a given
RNG into substreams, selecting “random” starting points for each substream in a reproducible way
and attempting to create truly distinct streama for each task. '

While some theory for such generators can be developed, empirical testing is still ;

Standard empirical tests can be used to assure the quality of t‘;dindiv?dud streun: We l;l:nu[:r::‘te
methods for testing whether the streams appear mutually independent. Fixed-dimensional tests which
bave been used “longitudinally” to test single streams can be used “latitudinally” to test independence
of streams. Uniformity tests, permutation tests, and partition tests can be used to test a handful of
streams, and collision tests can be used to test about twenty streams. Tests without fixed
dimensionality (runs tests, coupon collector’s tests, Bap tests) can be used latitudinaily on a very large
number of streams, but a more effective use is to modify the tests slightly to fix their maximum
dimensionality. Fourier transforms can be used to derive multiple comparisons tests for cross-
correlations and cross-periodogram tests. These are particularly useful in detecting unexpected overlaps
of streams. As all these tests involve a great deal of computation, efficient experimental designs for the
testing of many streams must be developed. :

An Approach for Generation of Two Variable Sets with a
Specified Correlation and First ans Second Sample Moments

Mark Eakin
Henry D. Crockett

University of Texas at Arlington

Certain simulations require the generation of correlated variables with prespecified f{irst and
second moments. The first step involved the random generation of two standardized variables.
Second, the first variable was replaced by a linear combination of the two variables such that the
correlation coefficient of the linear combination and the second variable is specified. The variables can
then be adjusted to give the required first and second sample moments without modifying the
correlation equations.

63




Asynchronous Iteration
William F. Eddy
Mark J. Schervish

Curnegie Mellon University

An asynchronous iterationis an iterative method in which the succesive iterations are not nec-
essarily performed sequentially. Such methods are particularly well-suited to parallel/distributed
systems in which several iterations can be performed simultaneously, but not necessarily syn.
chronously. Baudet (1978) and Mitra (1987) prove results concerning the convergence behavior
of asvnchronous iterative methods for various types of problems. Their results concern the worst
case behavior of the method and require conditions on both the behavior of the iterative process
and the specific problem being solved. We explore stochastic versions of these results in two
specific examples. The examples are

1. Finding the eigenvalues of a large matrix by Gauss-Seidel iterations; and
2. Random affine mappings for producing fractal-like images.

We implement asynchronous iteration on a parallel/distributed system consisting of powerful
workstations as described by Eddy and Schervish (1986).

References

Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors, Journal of the
Association for Computing Machinery, 25, 226-244.
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Determining Properties of Minimal Spanning Trees
by Local Sampling

William F. Eddy
and Allen Mclatosh
Carnegie-Mellon University
and Bell Communications Research

Let .,  be the fraction of vertices of degree i in a minimal spanning tree on a random sample
of n points in d dimensions. Steele, Shepp and Eddy (1987) show that as n increases a,,;; converges
with probability one to an unknown constant a,, independent of the sampling distribution. They
perform a small scale simuiation expetiment to determine a,y, i = 1,. . .,5 by estimating a,;, for
increasing values of n when points are distributed uniformly in the unit square. Here, we estimate a,,
directly by systematically sampling the aeighborhood of a particular point of the Poisson process with
constant intensity in d dimensions. We discuss a number of techniques used in order to avoid
generating large samples n > 10%. We also describe our attempts to estimate * ,,, the number of edges
in the minimal spanning tree path between a point;;:d its +'* pearest neighbo.




ON COMPARATIVE ACCURACY OF MULTIVARIATE
NONNORMAL RANDOM NUMBER GENERATORS

Lynne K. Edwards E
Department of Educational Psychology

University of Minnesota
Minneapolis, MN 55455-0211

Abstract

There are two easily accessible methods of generating
multivariate nonnormal distributions using the IMSL. They
are: a multivariate extension of Fleishman's (1978) method
with an intermediate correlation matrix adjustment and a
contamination method. Neither of them can produce all
possible combinations of marginal skew and kurtosis, but these
methods have an advantage over generating the known
extreme distributions when the generation of multivariate
nonnormal distributions with specified intercorrelations and
specified marginal moments is required to simulate a plausible
situation. The MSE for the four marginal moments and for the
intercorrelations were compared between these two methods.
The Fleishman-type method produced sample correlations
much closer to the parameters than the contamination method
but the reversed trends were found among the marginal
moments.
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"Derivative estimation by Polynomial-trigonometric regression"
by
R.L. Eubank, Southern Methodist University

and
Paul Speckman, University of Missouri-Columbia

Abstract

Let 4 be a smooth function defined on an interval [a,b] and

suppose that Yyr---+¥, are uncorrelated observations with

E(yj) - p(cj) and Var(yi) - az, j=1,...,n, where the tj are fixed

in [a,b]. Estimation of u and its derivatives by regression on.
trigonometric and low order polynomial terms is considered. Tho‘l

polynomial terms are shown to adjust for the boundary bias
problems known to be suffered by regression on trigonomectric
terms alone, and the resulting estimate of u has asymptotics
competitive with other nonparametric mecthods. In addition, {if
the observations are equally spaced, derivative estimates
obtained by this method are competitive with other methods.

ELECTRONIC MAIL - A VALUABLE AUGMENTATION TOOL FOR SCIENTISTS

Elizabeth Feinler
SRI International
Network Information Systems Center
Menlo Park, California 94025
(Electronic Mail: FEINLER@SRI-NIC.ARPA)

ABSTRACT

Most scientists today have access to personal computers, work stations, or
mainframe computers in the course of their work. Many of these computers also
support electronic mail which can be used to augment the exchange of ideas
among researchers. Electronic mail is easy to use and can serve as a trans-
port mechanism for sending data and information quickly and efficiently across
networks to other scientists or to other computers. Some of the electronic
mail services and programs currently-available to scientists are outlined and
ways in which they can effectively use electronic mail in their work is
discussed.

INFORMATION SYSTEMS AND STATISTICS
Nancy Flournoy
National Science Foundation

The accessibility of high dimensional data presents new challenges to the Statistical Consulting
Community. Attention to the orgainization of such data results in a novel environment, rich with
opportunities for extendiog the frcatiers of the Decision Sciences. Such a data environment will be
described and consequent new statistical methods which are needed will be sketched.
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A Comparison of Spearman’s Footrule and Rank Correlation
Coefficient With Exact Tables and Approximations
LeRoy Franklin

Indiana State University
ABSTRACT:

Given two rankings of n objects a widely used nonparametric
measure of association between the rankings is Spearmans-p given
in unnormalized form as S where

(pl—qx)z
l

S(p.,q) =

w 13

1

However an equally simple but neglected competitor is Spearman’s
Footrule (1904) and is given in unnormalized form as

D(p,q) =

HmMmg

i l‘p‘_q‘I'
Diaconis and Graham in a 1977 paper in the Journal of the Royal
Statistical Society recently renewed interest in D by
establishing a limiting normal distribution. Ury and Kleincke in
a 1979 paper in Applied Statistics tabulated the exact c.d.f. for
D for n=2(1)10 and gave an approximate table for n=11(1)15
generated by Monte Carlo simulation. They also conjectured about
the rate of convergence of D and whether an improvement in
approximation could be obtained by using a +1 continuity
correction factor as is used for Spearman’s Rho.

This paper presents exact tables of Spearman's Footrule for
n=11(1)18 using computer intensive calculations of the exact
permutation distribution. This was done using a specialized
program utilizing both permutations and combinations to achieve
several orders of magnitudes of increase in CPU processing speed
over "direct approach” calculations.

Then for both Spearman’s Footrule and Spearman’s Correlation
Coefficient the maximum differences between the exact c¢.d.f. and
the normal approximation is given as well as the maximum
difference between the exact c¢.d.f. and the normal approximation
with correction for continuity. Comparisons are made and graphs
of the differences in the c¢.d.f.'s are provided for
representative values of n.
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Fitting Functions to Noisy Scattered Data in High Dimensions”

JEROME H. FRIEDMAN
Department of Statistics
and

Stanford Linear Accelerator Center
Stanford University, Stanford, California, 94305

ABSTRACT

Consider an arbitrary domain of interest in n-dimensional Euclidean space
and an unknown function of n arguments defined on that domain. The value of
the function—perhaps perturbed by additive noise—is given at some set of points.
The problem is to find a function that provides a reasonable approximation to
the unknown one over the domain of interest. A new approach is presented for
the practical solution to this problem. This method, based on adaptive splines,
appears to be able to provide smooth, accurate, parsimonious, and interpretable

approximations to a wide variety of functions of a multivariate argument.

» Work supported by the Department of Energy, contract DE-AC03-76SF00515.




Dimensionality Counstraints on Projection and Section Views of High Dimensional Loc;
George W. Furnas
Bell Communications Research ..

A basic theoretical limitation is shown for the two general graphical techniques for constructing
geometric views of high dimensional loci: PROJECTION and SECTION (called “conditioning™ in
statistical contexts) . Basisically, projections can only easily display aspects of structure that are of
low dimensionality. Sections, i.e, intersections of linear subspaces with a locus, can easily display
structure of only low CO-dimensionality (and hence high dimensionality). Fortunately, compositions
of Section and Projection can display aspects of structure of any intermediate dimensionality. These
assertions are proven for fundamental idealization of loci that are arbitrary affine subspaces of a high
dimensional space. The issues introduced by finite extent, by curvature, by sampling and by error
noise are then discussed, basically in terms of notions of scale. Two examples of using the Projection &
Section composition technique are given, examining the structure of high-dimeasional objects embedded
in a six-dimensional space.

BIAS OF ANIMAL POPULATION TREND ESTIMATES
Paul H. Geissler and William A. Link
U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland

The trend (rate of change) of animal populations is often estimated as

A (74D T A& 3
‘:Ai él(y) = ; Al' dl'

where i indexes sampling units, A is the stratum area, ¢ is the predicted count of animals, and ¢ is the
mean year (§=0). Counts are estimated using the model

c,(y) = a; 3! 8;; €, where a, J, and @ are the intercept, slope, and observer effect parameters and ¢
is the error. Parameters are estimated by means of linear regression on the logarithmic scale using the
unbiased estimation techniques of Bradu & Mundlak.

The bias of this estimator was studied using a factorial simulation experiment with lognormal,
Poisson, and negative binomial distributed counts. Bias increases sharply with increasing count
variance. Increasing the number of years reduced the bias but increasing the sample size had no
discernible affect on the bias. Including observer effects reduces the effective number of years. The
direction of the trend had no apparent affect on the bias. The bootstrap was ineffective in reducing the
bias, The use of reduced mean square error estimation techniques instead of Bradu & Mundlak's

techniques was found to increase the bias.
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MIXTURE EXPERIMENTS AND FRACTIONAL FACTORIALS USED TO TAILOR
LARGE-SCALE COMPUTER SIMULATIONS

T. ¥. Gardenier, Ph.D.
TKG Consultants, Ltd.
301 Maple Avenue West, Suite 100

Vienna, VA 22180

"Large acale computer simulations are in widespread and growing use in

government, business and science. Within the Department of Defense,

the use of simulation is particularly crucial because the real-world
scenario of the battle cannot be replicated. Environmental and health
simulations for risk assessment have complex determinants of pollution anl
target sites. Large number of parameters may initially appear to be l
needed in simulations. Experiment designs, and optimization achieved
through respense surgace methodology, can reduce the final set of

parameters in simulations to an efficient minimum.

The objective of thia paper is to present the use of several

experiment design procedures, including fractional factorials, mixture

i
i
i
experiments with constrained optimization, and Placket-Burman designs .
based on Hadamard matrices as pre-processors to computer simulations.
The methods have been used by the author to (a) minimize the number of I
computer runs, (b) conduct an input-ov 3sut analysias of model subroutines l
and measures of merit, (c) check for c¢.mputational model validity, (d)
design interactive graphical evaluation schemes for the simulation l
developer and user. These use of these experiment designs as

i

pre-processors resulted in cost-savings as well as efficiency for the

type ¢ sipulati -70Wmanagemenwt




Abstrace

Acceleration Methods for Monte Carlo Integration in Bayesian Inference

John Geweke, Duke University

Methods for the acceleration of Monte Carlo integration with n
replications in a sample of size T are investigacted. A general procedure for
combining antithetic variation and grid methods with Monte Carlo methods is
proposed, and it is shown that the numerical accuracy of these hybrid methods
can be evaluated routinely. The derivation indicates the characteristics of
applications in which acceleration is likely to be most beneficial. This ig
confirmed in a series of examples, in which these acceleration methods reduce
n and the computation time required to achieve a given degree of numerical
accuracy by up to several orders of magnitude. The methods are especially
well suited to vector processors, and on such processors substantial further
decreases in computation time are achieved. It is shown that without
acceleration the standard deviation of the numerical error in Monte Carlo
integration is 0(1/nT), and if antithetic acceleration is incorporated it is
0(1/nT2). It is conjectured that with the incorporation of grid methods this
standard error is O(I/nzT), and that with both antithetic variation and grid

methods it is 0(1l/n2T?2).




Higher Order Functions in Numerical Programming
David 5. Gladstein -

[CAD, Inc. ’
1000 Massachusetts Avenue
Cambridge, Massachusetts (02138

Conventional algebraic programming languages like C, Pascal, and Fortran Liave statically defined func-
tions and procedures, which are completely established by the time a program is compiled and linked. In
contrast, Lisp, Scheme, and other symbolic programming languages consider functions to be first class ob-
jects, meaning that they can be used as data and created at run time. Functions which map functions to
functions are said to be of higher order.

Higher order functions arise naturally in many ways. As a case study, I consider the sequential analysis
problem of computing certain confidence intervals using a probability A(z, i)

. ._{1_¢(,_g), fori=1;
D=L (1~ 0@ =y = 0)) dy fori22
where
_Jo(z~8), fora<z<;
file) = {0, otherwise,
and

. .
fi(zx) = / fici(y)o(e —y—-0)dy  fori> 2

(¢ is the standard normal density, & is the standard normal distribution, and a, 4, and 8 are fixed parameters.)
A naive implementation runs in time exponential in i, because each evaluation of f; requires integrating
a function involving fi_; over the interval (a, 8], and so on until f;. To achieve run time linear in i, we must
introduce the complication of saving (or cacheing) each value of each function f; as it is computed.
linplementing this calculation in C is very tedious, and results in much code tailored to the specific
problem. [ show how Lisp's ability to generate functions at run time results in a program with several
desirable properties:

1. The structure of the program mirrors the mathematical formulation of the problem. The use of cacheing
functions increases the size of the routine which caiculates A(z, i) by only one function call.

2. All integration is performed by a single, general purpose integration routine. This routine is used to
map a function f to another function F(a,b) = j: f(t)de.

3. All cacheing functions are produced by a general purpose function, which maps a function f onto a
cacheing version which produces the same results but caches all computations. The cacheing version is
as easy to deal with as the original function.

4. The array of (cacheing) functions {f;. f>,... fi} is simply computed from their definition. ¢ can be
arbitrarily large, subject only to memory constraints.

The complete Common Lisp source program for the sequential confidence interval problem is presented,
with a discussion of how the imp!~tnentation differs in C.

Performance comparisons herw-»u a Common Lisp version running on a Lisp machine and a C version
running on various configurations 1 personal computers are presented.
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MOVING WINDOW DETECTION FOR O0-1 MARKOV TRIALS

Joseph Glaz', Philip C. Hormel*® and Bruce McK. Johnson™ **
Unijversity of Connecticut and CIBA-GEIGY Corporation

ABSTRACT

Let X;, X5, . . . be a sequence of 0-1 Markov trials.
The random variable X; represents the number of signals that
were detected at the end of the ith discrete-time interval. The
k-out-of-m moving window detector generates a pulse whenever k
or more signals are detected within m consecutive discrete-time
intervals. Define Mc,m to be the waiting time for detection
using a k-out-of-m moving window detector. In this article we

-

derive Bonferrnni-type and product-type approximations for the
distribution of Mg, m+ Which in turn yield approximations for
E(Mk,m) and VAR(Mk‘m). These quantities play an important role
in the design and analysis of the k-out-of-m moving window
detection procedure. Applications to the theory of radar
detection and quality control (zone tests) are discussed.

Joseph l- - ¢ Asscciate Professor, Department of Statistics,
Iniversi . Ttnnecticut, Storrs CT 76268,
Philip <. # -mel [s Biostatistician, Marketing Clinical

-

Suppor*%, TTRA-3EIGY Corporation, Summit NJ 07901.

""" Professor Bruce McK. Johnson was with the Department of
Statistics, "Iniversity of Tonnecticut, Storrs CT 06268.

Regrettably, he passed away on November 4, 1986.
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Abstract

Software for Bayesian Analysis :
Current Status and Additional Needs

Prem K. Goel
The Ohio State University
Columbus, Ohio 43210, U.S.A.

We make an attempt to provide comprehensive information about the existing software for data
analysis within the Bayesian paradigm. The paucity of programs seems to indicate that the Bayesian
software available for widespread use is still in its infancy. We have a long way to go before 2 general
purpose Bayesian Statstical Analysis Package is made available. Alternatives for reaching this goal
quickly are presented in the concluding section.
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Paper .

Computarional Requirezents of Inference Methods

in Expert Svste~s: A Comparative Study

by

Ambrose Goicoechea
School of Informatior Technology and Engineering
George “ason University

Abstract

This paper presents a detailed comparative study of six major, leading methods for
inexact reasoning: (1) Bayes’ Rule, (2) Dempster-Shafer theory, (3) Fuzzy Set Theory, (4)
MYCIN Model, (5) Cohen’s System of inductive probabilities, and (6) a class of
non-monotonic reasoning methods. Each method is presented and discussed in terms of
theoretical content, a detailed numerical example, and a list of strengths and limitations.
Purposely, the same numerical example is addressed by each method to be able to
highlight the assumptions, knowledge representation and computational requirements that
are specific to each method. Guidelines are offered to assist in the selection of the method
that is most appropriate for a particular problem.

KEY WORDS: Inference models, expert systems, imperfect knowledge, uncertainty,
decision support systems, inference network, evidential reasoning.

Presented at :-: Twentieth Svmposium on the Interface of Computing
Science and Statistics, Reston, Virzinia, April 21-23, 1981,
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A Siinulated Annealing Approach to Mapping DNA
Larry Goldstein and Michael Waterman
Unisverssty of Southern California

The double digest mapping problem that arises in molecular biology is an
NP complete problem that shares similarity with both the travelling sales-
man problem and the partition problem. Sequences of DNA are cut at short
specific patterns by one of two restriction enzymes singly and then by both
in combination. From the set of resulting lengths, one is required to con-
struct a map showing the location of cleavage sites. In order to implement
the simulated annealing algorithm, one must define appropriate neighbor-
hoods on the configuration space, in this case a pair of permutations, and
an energy function to minimize that attains its global minimum value at
the true solution. We study the performance of the sirmulated annealing
algorithm for the double digest problem with a particular energy function
and 2 neighborhood structure based on a deterministic procedure for the
travelling salesman problem.

]
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SPACE BALLS!
OR
ESTIMATING DIAMETER DISTRIBUTIONS OF POLYSTYRENE MICROSPHERES

CHARLES HAGWOOD AND SUSANNAH SCHILLER
NATIONAL BUREAU OF STANDARDS
GAITHERSBURG, MD 20899

POLYSTYRENE MICROSPHERES, WITH NOMINAL DIAMETERS IN THE
RANGE OF 1 TO 30 MICRONS, WERE MANUFACTURED IN SPACE ON THE
SHUTTLE CHALLENGER AND ARE CERTIFIED BY THE NATIONAL BUREAU OF
STANDARDS AS STANDARD REFERENCE MATERIALS; THEY PROVIDE AN
IMPORTANT TOOL FOR CALIBRATING INSTRUMENTS THAT ARE USED TO
EXAMINE VERY SMALL PARTICLES. IN ORDER TO BE USEFUL, THEIR
DIAMETER DISTRIBUTIONS MUST BE WELL-CHARACTERIZED. ONE
MEASUREMENT TECHNIQUE PROPOSED IS TO FORM CLOSELY PACKED
HEXAGONAL ARRAYS ON A MICROSCOPE SLIDE WITH THE SPHERES, MEASURE
THE ROW LENGTHS, AND IMPUTE THE DIAMETERS FROM THESE. THE
OBVIOUS DIAMETER ESTIMATE IS THE ROW LENGTH DIVIDED BY THE
NUMBER OF SPHERES [N THE ROW. HOWEVER, BECAUSE TBE DIAMETERS
ARE NOT IDENTICAL, THERE ARE ALWAYS AIR GAPS IN THESE ARRAYS WHICH
INFLATE THE DIAMETER ESTIMATES. THESE AIR GAPS CANNOT BE
MEASURED 8Y THE MICROSCOPE, NOR CAN THEY BE MODELLED
MATHEMATICALLY. THEREFORE, OUR APPROACH TO THIS ESTIMATION
PROBLEM IS TO SIMULATE ARRAYS OF THE SPHERES AND DETERMINE THE
BEHAVIOUR OF THE AIR GAPS. METHODS OF SEQUENTIAL ANALYSIS ARE
USED TO DERIVE ESTIMATES OF THE MEAN DIAMETER AND ITS VARIANCE.

-
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TIME SERIES IN A MICROCOMPUTER ENVIRONMENT

John Henstridge, Numerical Algorithms Group
Microcomputers provide a major challenge to statistical softyare

writers not only because of their small memory zad relativsly sger
compxiersvcompared with mainframes but also beacause users have come
to expect a very high standard of “user friendliness”. This
standard has been <2t by business oriented software <such as
wordprocessors and spreadsheets and compared with these most
mainframe statisticali software stands up wvery poorly. Partiy this
problem stems from the tradition in statistical computing for
packages to he highly portable and hence make no use of gspecial

facilities in any siagle computer.

This challenge was encountered when transfering a major times series
package TSA onto IBM type personal computers.1 As well as the
obvious need to give th2 package a more screen oriented appearence
it was found desirable to develop an environment especially for the
most difficult time series problam ~ time domain and tranfer
function model selection and fitting. This entailed the package
keeping records of the history of the fitting process and enabling
the user to recall details of statistical importance so that models
could be readily compared and assessed. The numerically intense
nature of most times domain wodel fitting and the relative slow
speed of p2rsonal cowputers also demanded that the package make
efficient usa2 of any information prewviously gained about the series

being wode2ied and preawviously fitted modeis.
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ARSTRACT

A MATA ANALYSIS AND RAYES JAN FRAMEWORK FOR ERRCRS-IN-VARIARLES
John H. Herbert, Department of Energy

More than fifty years ago Ragnar Frisch, the first Nobel prize
winner in economics, set forth graphical and statistical procedures for
Aetermining the effect of errors-in-variahles on estimated coefficients
in a regression analysis. The procedures were recommended on heuristic
grounds hut their statistical properties were not delineated. The
‘procedures were also viewed as computationally prohibitive.

Patefield in a 1981 article in the Journal of the Royal Statistical
Society demonstrated that the statistical procedure set forth by Frisch
yields maximum likelihood hounds for a true coefficient. Klepper and
[eamer in a 1984 Econometrica article extended the procedure within a
Rayesian Framework. Stewart in a 1981 article in Statistical Science
recommended the collinearity indices that are byproducts of the Frisch
errors—in-variables reqression procedure as ideal collinearity indices.

In this paper we will first surwarize the statistical properties
Oof the Frisch procedure. Then, a relatively simple computational procedure
for nbtaining solutions will he examined in detail. This computational
procedure yields the collinearity indices. Finally, the methodology will
be applied to an actual »ronlem with real data to demonstrate the usefulness

nf the procedure 31s a - vl for a regression analysis.




ARSTRACT

AN EMPIRICAL APPROACH
Thomas Herzog

The Federal Housing Administration (FHA)

pseudorandom numbers,

COMPARING SAMPLE REUSF METHODS AT FHA--
U. S. Department of Housing and Urban Development
recently
completed a study of its single~family home mortgage
insurance program for investor (i.e., non-occupant)
A probability sample of over 6,000 locans was drawn and the
results were analyzed using both Rayesian and sample reuse
procedures, In this workﬁ we compare the results of the
sample reuse methods to each other as well as to the
Rayesian method. Finally, Monte Carlo methods are used to
simulate the results to see to what extent the same

relationships hold under various schemes for generating

o




Copy available to DTIC does nu
pemmit fully legible reprodwctien

ABSTRACT FOR THE 20TH § YMPOSIUM ON THE INTERFACE:
COMPUTING SCIENCE AND STATISTICS 1988, RESTON, VA

INSIDE A STATISTICAL EXPERT SYSTEM:
Implementation of the ESTES expert system

Paula Hietala
University of Tampere
Department of Mathematical Sciences/Statistics
P.O. Box 607, SF-33101 Tampere, FINLAND

Keywords: Expen systems; Rules, Explanation capabilities

Statistical expert systems are an interesting and novel area of statistical computing today (see e.g.
Chambers (1981), Gale (1986) and Hietala (1987)). However, the implementations of these systems are
often described very cursorily and the reader is left unaware or in doubt of the methods employed as well
as of the inner structure of the system. In this paper we consider the implementation of a statistical expert
system called ESTES (Expert System for TimE Series analysis) in more detail. The ESTES system is
intended to provide guidance for an inexperienced time series analyst in the preliminary analysis of time
series, i.e. in detecting and handling of seasonality, rend, outliers, level shifts and other essential
properties of time series (Hietala (1986)). Our system is organized so that as much as possible of
knowledge or experierce of the user (about the specific time series being considered) is exploited. Even
in the case of an inexperienced user he/she may have plenty of useful knowledge concerning the
environment of the problem in question. However, if there exists a conflict between the initial results
computed by the system and the knowledge elicited from the user, then the ESTES system sets out to
carry out more extensive analysis and apply more sophisticated statistical methods. With this kind of
organization we strive for minimizing the number of unnecessary reasoning and calculation steps.

The ESTES system has been implemented on Apple Macintosh™ personal microcomputers using
Prolog and Modula-2 languages. We have selected if-then rules for representing knowledge on
properties of time series and their handling. Rules have many desirable features (modularity,
incrementability and modifiability, see Bratko (1986)). Rules in our system are either of form:
RuleName: if condition A then conclusion B, or of form: RuleName: if condition A then action C. The
condition part of a rule may be combined (it can contain and and or operators); moreover, a condition and
an action usually include an invisible call to Modula-2 procedures. This kind of rules are easily
expressed in Prolog: in fact, they are legal Prolog clauses if we define appropriate operators (e.g. :, if,
then). The rule-base of the ESTES system has been organized hierarchically according to (1) the
property being considered, (2) the level of analysis process (whether we performing initial or more
extensive analysis) and (3) the goal of the analyzing (detecting or handling of the property).

One of the most essential features of an expert system is its ability to explain its own actions. With
this in mind. we have paid special emphasis to the explanation capabilities of the ESTES system. We do
not use Prolog’'s own trace facility but have built an interpreter on top of Prolog. This interpreter
manages the reasoning process of the ESTES system: it accepts questions and finds answers. For
¢..ample, user can ask 'why' and 'how' questions ("Why the system inquires this fact?”, "How the
system has reached this conclusion?", see e.g. Bratko (1986)); our system's reply consists of displaying
a user-friendly form of its inner interence chain with explanatons and justifications of those methods that
are used inside the chain.

In the full paper we will describe in detail the formaiisms employed in representing knowledge and
the structure of our inference ¢n.:ne. We will also characterize the interface between the rule-base part
(Prolog clauses) and the statisticui part (Modula-2 procedures) of the ESTES system.
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The Data Viewer: A Program for Graphical Analysis
Catherine Hurley
University of Waterloo

" The presentation will contain descriptions of some graphical methods for analyzing multivariate data

and their inplementation in the data viewer program. The program produces plots moving in real-time
by projecting onto a sequence of user-controlled planes. Multiple plots may be simultaneously

controlled, allowing dynamic comparisons of data sets.

The data viewer constructs sequences of planes by interpolating between user-chosen target planes.
Following the proposal of Buja and Asimov (1985), the program interpolates along geodesic paths.
Available chioces include planes yielding bivariate scatterplots, principal components, or cannonical

variable plots.
When plots are linked, they may be simultaneously controlled and manipulated. With the data

viewer’s object oriented design, such linked plots are easily constructed. As a consequence, data sets

may be compared and related in very general ways.
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SPLINE ESTINATICN CF DEATH SENSITY ¥SING
CENSUS AND VITAL STATISTICS DATA

John .. Hsieh, University of Toronto

This pajer develops a precise method for constructing period life
tables through estimation of death density functionsusing spline
method, The japer derives a set of formulas for computing the survival
function from the observed cross-sectional death and ropulation data
in five-year age grcupings. A complete cubic spline is then fitted
through the computed survival curve defined on a mesh with n age points
as knots, The two endslopes as boundary conditions are determined from
observed population and death data using the properties of the lifetime
distribution. Ceath density function is obtained by spline differ-
enciation of the survival function, Hazard function is then obtained
as the ratio of the density and survival functions. The article also
contains spline integration for computing the person-years lived and
the life expectancy as well as interpolation for making a complete
1life table from the abridzed life table so constructed. The complete
cubic cardinal spline representztion allows best approximation
(minimum morm, rapid convergence, etc.) tc be simply and stably
computed using existing algorithm, The parameters are determined by
solving the n+2 systems of n-2 linear equations together with the two
boundary conditions for the cardinal spline. The tridiagonal form of
the coefficient matrices allows the linear systems to be easily solved
using a computer by Zaussian elimination which simplifies to the
“Thomas algorithm"., Furthermore, the diagonal dominance and symetric
characteristic of the matrices guarantee stable results with minimum
accumulation of rounding error.
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Simultaneous Confidence Intervals in the General Linear Model by Jason C. Hsu

In the general linear model (GLM) X = X[ + g, X is a vector of observations, X is a
known design matrix, § = (By, ... , Bp) are unknown parameters, and g is a vector of iid
normal errors. Suppose §* = (By, ... , By) are of interest (k < p); B1, ... , Bk may be the
coefficients in a response surface model, or treatrnent contrasts in an ANOVA or ANCOVA
setting. Consider simultaneous confidence intervals {3 € bj £ cs(b;) fori=1, -, k)
where b is the least square estimator of 3* and s(by) is the estimated standard deviation of
b;. The exact coverage probability CovProb = P{Ib; - Bil/s(b;) <c fori=1, -, k}, and
thus the critical value ¢, is computable in reai ime by quadrature if the correlation matrix R
of b satisfies

a2 0 ) (M
R= y ) ] - (l]---lk) 1
0 1-A, '
Ak
for some A = (Aq, ... ,Ak)'. Inreal life R rarely satisfies (1), due to covariates and/or
missing values. Instead of using Scheffé's projection method or Sidak's inequality to
bound CovProb below by 1-a, we approximate CovProb by replacing the given R with

the "closest” correlation matrix R’ satisfying (1). In the case of the + sign, this is
equivalent to finding an auxiliary variable bg so that (by, -+ , by) conditional on bg are
almost independent, and condirionally pretending them to be independent in analogy with
Sidak's method. The key is that R' is the 1-factor decomposition of the deterministic
matrix R, which can be computed using existing Factor Analysis algorithms for various
norms. The case of the - sign, which involves complex integration, can also be handled.

Simulation shows the approximation to be excellent. For comparing treatments when
there are covariates (ANCOVA), using a real data set in Scheff¢ for example, variance-

reduced simulation estimates of true non-coverage probability o are

Nominal Unbiased Esti (T 95% Confid [ for T
0.10 0.10 - 0.000025 (0.0991, 0.1008)
0.05 0.05 + 0.000175 (0.0496, 0.0508)
0.01 0.01 - 0.000125 (0.0096, 0.0101)

Improvement over traditional methods is substantial. For a real data set in Draper and
Smith, for example, the critical value ¢ that determines the half-widths of the confidence
intervals are as follows for various methiods:

Bonferront Sidak ' Scheffé Proposed
3.206 3.194 3.919 2.52§

The MEANS option in PROC GLM of SAS ignores the nuisance parameters Bx41, ..
, Bp in the user-specified model, in order to guarantee that R satisfies (1) in an ANOVA or

ANCOVA setting. But the resulting b does not esimate §* in the user's model, rendering
the confidence intervals produced meaningless. This little known error in SAS casts
doubts on some published findings (e.g. Science 1987, pp. 1110-1113).

83

_




The Simulation of Life Tests with Random Censoring

Joseph C. Hudson
GMI Engineering & Management Institute

Abstract

n items are placed on test. Each item ramains on test until
either failure or removal from test by a random censoring
mechanism independent from the failure mechanism. Such censoring
can result from failure of the test apparatus or from fajilure due
to a failure mechanism independent from the one under study. This
paper considers the simulation of such a life test under the
constraint that the number of items censored is a Binomial random
variable with parameters n and p., where p. is the probability of
censoring. This allows simulations to be run specifying the
expected percentage of censored items.

Simulations are carried out using Weibull, Uniform, Truncated
Normal and Truncated Cauchy failure distributions. The censoring
distribution is taken to be Exponential. With user-specified
failure distribution and probability of censoring. the mean of the
censoring distribution is determined so as to enforce the
constraint that PC T, < Ty O = p.. Where T, and Ty are the
censoring and failure times of the i'h item, respectively. A
failure time and a censoring time are independently generated for
each item, with the smaller of these times taken as the time of
removal from test.

Details of the implementation are discussed and a validation
study is presented. An appendix gives mathematical derivations.

The simulation is implemented in Pascal.
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VISUAL MULTI-DIMENSIONAL GEOMETRY With APPLICATIONS
Alfred Inselberg * # & Bernard Dimsdale *

* IBM Scientific Center &

11601 Wilshire Boulevard
Los Angeles, CA 90025-1738

A non-projective mapping RY < R for any
positive integer N is obtained from new
system of Parallel Coordinates. Relations in N
variables are portrayed as pianar "graphs” hav-
ing certain properties analogous to the corre-
sponding Hypersurface in RV, In the plane a
point = - line duality leads to efficient algo-
rithms for Convex Merge and Intersection of
Convex Sets. A line in RV is represented by
N~ 1 planar points and a hyperplane by N -1
vertical lines. These enable some geometrical
constructions and the representation of
polyhedra in RY. The representation of a class

& Department of Compuaer Science
University of California
Los Angeles, CA 90024

of more general convex and nonconvex
hypersurfaces is known. There is an algorithm
for constructing and displaying any point inte-
rior, exterior or on a hypersurface belonging to
these class. Computer Graphics implementations
will be shown of:

* the representations,

» algorithms,

« application to Exploratory Duta Analysis in Sta-
tistics, and

« a new Air Traffic Control Sysem (ie. R%)
where the time and space trajectory informa-
tion is displayed and used in collision avoid-
ance (proximity) and routing,

Knowledge-based Project Management: Work Effort Estimation

V. Kanabar
Department of Mathematics
University of Winnipeg

Knowledge-based techniques are applied to project management work effort estimation and
resource selection. The estimating process is one of the most critical and difficult activities in project
management. By integrating knowledge-based technology with project management we provide a
certain deductive capability that is useful in wortk effort estimation. This paper describes such a
model and the statistical techniques used to produce estimates of work effort involved in a project.
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MAXTMUM ENTRCEY AND I7S APPLICATION TO

LINGUZSTIC DIVERSITY

3y

R. K. Jain

Cepartment of Mathematics and Statistics
Memorial Uniwversity of Newfoundland
St. Jonhn's, Newfoundland, Canada AlC 587

ABSTRACT

The linguistic diversity in large cities are ctserved to fluctuate in time

dezenzant ugzn thelr graZizticn of thae fusur2 raprezsmTatlicn in the soomunLo.
1% Inis rzager, <n2 gringisla zf maximum antrizy is zzpliad o study zthe

LLNZoL3TLC ZLeICsLT LnZ2D angarTtalnc Neomecsllza 2 *5 used T

i..23T23aza an algcriszshm oz gredicting zrobazillity Znstrlzution zased cnotha

rinissle of maximum enz:-izy.
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Discrete Structures and Reliability Computations

James P. Jarvis
Department of Mathematical Sciences
Clemson University

Douglas R. Shier
Department of Mathematics
College of William and Mary

The computation of the reliability of a system, in terms of the raliabilities of its
components, has become increasingly important in assessing the performance
of various computer, telecommunication, and distribution networks. For
exampie, in a typical scenario, the edges of a network are assumed to fail
randomly and independently with known probabilities and it is required to
calculate the probability that the system functions (e.g., supports point-to-point
message transmission).

Unfortunately, the computation of most probabilistic measures for general
networks is mathematically intractable (i.e., NP-hard). Thus it is fairly uniikely
that good algorithms (with time complexity polynomially bounded in the size of
the network) can ever be devised. However, it has recently been found that
"pseudopolynomial” algorithms are possible for certain network reliability
problems: namaely, algorithms whose complexity is polynomial in the number of
paths or cutsets in the network.

This talk will discuss the role of discrete computation in calculating the
"two-terminal” reliacility of planar networks (still an N#-hard problem).
Specifically, we first discuss data structures for representing, manipulating, and
traversing planar graphs. Such structures are then used to develop highly
efficient methods for generating paths and cutsets in planar graphs. Finally,
certain algebraic structures (lattices) are employed to aid in combining such
combinatorial objects (paths, cutsets) to produce the reliability polynomial for
planar systems. These methods are applied to some fairly challenging
examples from the literature, and representative computational results are
presented.
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QuUTOMATIC DETECTION OF THE OPTIC NERVE [N COLOR IMAGES QF THE RETINA
Norman Katz, Subhasis Chaudhuri¥, Michael Goldbaum and Mark Nelsonkx

Dept. of Ophthalmoloagyv, *Dept. of Electrical Engineering,
University of California, 3an Diego
Lta Jolla, CA 92093

XX Radford Company
1755 Homet Road
Pasagena, CA 71104

Detection and i1dentification of objects in retinal images
plays an i1mportant role 1n assisting physicians in diagnhosing
gdirseases of the eve. Normal objects typically found in these images
include blood vessels, the optic nerve and the fovea. Abnormal
objects include hemmorhages and lesions. Some progress has already
been reported by different researchers in detecting blood vessels in
these images. However, little work has been discussed 1n which the optic
nerve 1s automatically identified. We have developed a method that
combines image processing algorithms with Bayesian classification
rules to determine the location of the optic nerve i1n retinal images.

The optic nerve, also known as the optic disk, may be
characterized as a brignt, elliptically shaped object in the retinal
image. However, the detection of the disk is often complicated by
the presence of arbitrarily shaped abnormal objects known as lesions.

The size, shape, brightness and color of these lesions vary widely

among different i1mages., according to the nature and progression of

the patient’ s disease. For this reason, no single characteristic feature
can be used to correctly 1dentity the optic disk.

The proposed method includes five classification
rules, based on certain physiological properties of the opotic disk:
{a) si1ze, 1In terms of major and minor axes of the ellipse; (b)) brightness:
(c) color: (d) density of edges including both the rim of the disk and
the blood vessels within the disk area; (e) presence of large calliber
vertically-ariented blood vessels directly above and below the disk.
By suitable ~hoice of weighting coefficients, these rules can be
combined to determine the maximum likelihood estimate for
classification of the disk. This technigue has been found to be
effective in & large numpber of retinal 1mages. It 15 also being
incoroporated into a system for automatic diagnosis of retinal
diseases.
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The Use of General Modified Exponential
Curves in Software Reliability Modeling

-

by
T. M. Khoshgoftaar

Department of Computer Science
Florida Atlantic University
Boca Raton, Florida 33431
Telephone (305) 393-3994

In this paper, we develop a nonhomogeneous Poisson process with a mean value

function which hae a General Modified Exponential growth curve for the number of

‘detected software errors. This model produces an exponential growth curve (Goel and

Okumoto model) and the Logistic and Gompertz models as special cases. It should

be recognized that by fitting the Goel and Okumoto model, the Logistic model, or

the Gompertz model to a data set of software failures,a prior restriction is

being imposed upon the more genétalized model. Such restrictions may be inappro-
priate in any particular application. By fitting the General Modified Exponential
model, the power law parameter, p, is estimated by the data and is not constrained,
possibly incorrectly, to -1 (Goel and Okumoto model), +1 (Logistic model), or zero
(Gompertz model). Therefore, a much wider range of growth curves become available,
offering the possibility of finding a more appropriate functional form in any

situation.

The parameters of this model are estimated using the maximum likelihood method.

Comparisons withother software reliability models are wade.

A set of failure data, whic' was collected from a real time command and control

system, is used to fit each model.
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ASSESSMENT OF
PREDICTION PROCEDURES IN
MULTIPLE REGRESSION ANALYSIS

Victor Kipnis

As opposed to the traditional inference a major goal of modern regression analysis
is model building, i.e., obtaining a regression equation satisfying some specified criterion.
When the purpose of regression analysis is prediction of new observations, model building
is usually reduced to selection of a predictor among the class of potential predictors.
The paper examines the problem of estimating of the mean squared error of prediction
(MSEP) for a linear regression predictor chosen by a given selection procedure. The
theory behind the conventional MSEP estimators is not valid when predictor selection and
estimation are from the same data. The very selection process affects the distribution of
those estimators and, in particular, leads to their substantial bias when the selection effect
is not allowed for. To be able to get an adequate estimator we bring in the “procedural
approach” and suggest that assessment of the efficiency of a predictor should rest on the
assessment of the selection procedure by which this predictor has been chosen, rather
than the evaluation of any particular predictor equation. As exact distributional results
are virtually impossible to obtain, even for the simplest of common selection procedures,
the suggested approach is based on generating bootstrap pseudosamples and applying
to them the same selection procedure that was used for the original data. Simulation
results comparing MSEP estimators provided by this method with the conventional ones
are described. It is also shown that the presented method may help in finding a good

predictor.
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Numerical Approach to Non-Gaussian Smoothing
and [ts Applications

Genshiro Kitagawa
The Institute of Statistical] Mathematics
4-6-7 Minami-Azabu, Minato-ku, Tokyo JAPAN

Recursive formula for filtering and smoothing of general non-Gaussian state space
model can be obtained. The formula can be realized by various numerical ap-
proximation methods. Thus the analog of the Kalman filter and fixed interval
smoothing algorithm can be applied to various time series problems. Some appli-
cations of the non-Gaussian state space modeling is also shown.

Dynamically Updating Relevance Judgements in Probabilistic
[nformation Systems via User’s Feedback

Peter J. Lenk
Barry D. Floyd
New York University

A decision maker’s performance relies on the availability of relevant information. In many
environmeats, the relation between the decision maker’s informational needs and the information base
are complex and uncertain. A fundamental concept of information systems, such as decision support
and document retrieval, is the probability that the retrieved information is useful to the decision
maker’s query. This paper present a sequential, Bayesian, probabilistic indexing model that explicitly
combines expert opinion with data about the system's performaance. The expert opinion is encoded into
probability statements. These statements are modified by the user’s feedback about the relevance of
the retrieved information to their queries. The predictive probability that a datum in the information
base is applicable to the current query is a logistic function of expert opinion and the feedback. This
feedback enters the computation through a measure of association between the current query-datum
pair with previous, relevant query-datum pairs. When this measure is based oa the proportional
matching of multiple attributes, the predictive probabilities have a recursive formula that makes the
model computationally (easible for large information bases.

Keywords: Decision theory, Bayesian inference, decision support systems, expert systems, document
tetrieval, probabilistic indexing.
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Avthor: J. Knaub

Organization: Erergy InformatTion Adminisfrafi}n, Jffice of 2il & Gas

Title: A SensiTiviTy Analysis of The Merfindanhi-Hirschman Index (HHI)

AbstraoctT:

When comparing The HHI value for a given situaTion in one Time
period, To anoTher Time pericd, There is 3 quesTion as To when one
can say o suostantial change has Taken place. If a small change In a
frame ofTen resuitTs in a large change in The HHI, Then a small change
in The HHI may not mean very much. Conversely, If a large change in a
frame ofTen resviTs in a small change in The HHI, Then one couid say
a small change in HHI may be very Iimportant. (NoTe That if boTh of
These sitTuatTions are TFuo, This would be analogovs To an hypoThesis
TesT where both The Type I and Type II error probabilities are
large.) Further, tThere is The inherent guesTion as To what is a large
change and what is a small change. In This paper an atTempT is made
To answ~wer These quesTions for given seTs of daTa from The peTroleum
indusTry, vsed by The Energy Information AdminisTration.

Specifically, daTa were sxomined for companies by STaTe for a given.
product. Companies were drawn ot random witTh replacement from The
original 1isT of companies for The given STaTe and producT. When The
same numoer of companies were drawn as orginaily found, the HHI was
caleviaTed for This new setT of companies. This case, called “"unre-
stricted,” Is only of passing inTeresT, aos a case where The ToTal
volume for The STaTe and product must be within, say, five percenT of
the original ToTal volume is more relevanT To This study. Coeffi-
cienTs of variaTion (CVs) were found (for different numbers of repli-
cationsg) . Thus, one covld see what changes in The =HI could be expec-
Ted when companies of The same Type, number, and aoproximaTeiy The

sare ToTal volume are used for each STaTe/producT.
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AN INTRODUCTION TO CARTTM:
CLASSIFICATION AND REGRESSION TREES

Gerard T. LaVarnway
Department of Mathematics
Norwich University
Northfield, Vermont

ABSTRACT

The general classification problem may be described as follows:

Given a multivariate observation z which is known to belong to
(emanate from) one of n possible populations (platforms),

determine which population is most likely. The analyst who is
performing this classification has a historic data base of
observations, for each of which the actual population is known,

and has suspicions - in the form of prior probabilities -

regarding the likely population of z. .

Traditional methods of dealing with this problem often lack
flexibility. Observations, for example, are often assumed to be
normally distributed. Traditional methods typically cannot deal
with observations that contain categorical variables or missing
data in a natural way.

The flexible nonparametric approach described in CART
(Classification and Redression Trees (1984) Breiman, et al.,
Wadsworth) will be discussed. The classification rules appear in
the form of binary decision trees which are easy to use,
understand and interpret.
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AN EMPIRICAL 3AYES DECISION RULE OF TWO-CLASS FATTERN
RECOGNITTION FOR ONE-DIMENSIONAL FARAMETRIC DISTRIBUTIONS

By
Tze Fen Li and Dinesh S. Bhoj

ABSTRACT

In the pattern classification problems, it is known
that the Bayes decision rule, which separates two classes,
gives a minimum probability of misclassification. In this
paper, we assume that the conditional density belongs to
any parametric family with unknown parameters and that the
prior probability of each class is unknown. A set of past
ocbservations (or a training set) of unknown classes is used
to establish an empirical Bayes decision rule which performs
like the Bayes rule and separates two classes with the '
probability of misclassification close to that of the Bayes
rule. Monte Carlo simulation results are presented for
several parametric distributions including normal and
uniform distributions

Key words and phrases: classification, empirical Bayes,
pattern recognittion.

author's address: Lepartment of Mathematics, Rutgers
University, Camden, NJ 03102, Tel:609-757-64139,
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STATISTICAL MODELING OF A PRIORI INFORMATION
FOR IMAGE PROCESSING PROBLEMS

Z. Liang

Dept. of Radiology, Ouke University Medical Center, Durham, NC 27710
ABSTRACT

Statistical modeling of image processing problems of ill-posed in inverse process
has been enhanced in recent years in terms of maximizing source entropy function
(1-2) and in terms of maximizing data likelihood function (3-4). Although some
effort has been made to consider both the source entropy and data likelihood in-
formation (5-6), statistical modeling of the image processing problems has not
yet been extensively investigated. A formalism of Bayesian analysis incorporating
the Poisson or Gaussian statistics of observed data accuratly is discussed in de-
tail in this paper on different a priori source distribution probabilistic infor-
mation. Most statistical methods can be derived from this formalism considering
the different a priori source information. Systems of equations determining the
Bayesian solutions were given for the different a priori source distribution in-
formation by maximizing the a posteriori probability given the observed data. It<
erative Bayesian algorithms to carry out the calculation for the Bayesian solu-
tions were derived using an expectation maximization technique (7). These algo-
rithms were applied to computer simulated phantom imaging data. Improvement in
image processing with these algorithms was demonstrated, compared to those algo-
rithms of maximizing source entropy and data likelihood functions.

(1). R. Kikuchi and B. Soffer "Maximum Entropy Image Restoration [. The En-
tropy Expression" J. Opt. Soc. Am., vol.67, 1656-1665, 1977

(2). J. Skilling and S. Gull  "The Entropy of an Image" SIAM Am. Math. Soc.
Proc., vol.14, 169-189, 1984

(3). L. Shepp and Y. Vardi “"Maximum Likelihood Reconstruction for Emission
Tomography"  IEEE Trans. Medical Imaging, vol.l, 113-122, 1982

(4). A. Rockmore and A. Macovski "A Maximum Likelihood Approach to Transmis- J§
sion Image Reconstruction from Projections” [EEE Trans. Nucl. Sci., vol.
24, 1929-1935, 1977

(5). B. Frieden "Restoring with Maximum Likelihood and Maximum Entropy" J.
Opt. Soc. Am., vol.62, 511-518, 1972

(6). B. Frieden "Statistical Models for Image Restoration Problem"  Computer
Graph. Image Proc., vol.l12, 40-58, 1980

(7). A. Demspter, N. Laird and 0. Rubin  "Maximum Likelihood from Incomplete
Data via the EM algorithm"  JRSS, vol.B, 1-38, 1977
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A POOLED ERROR DENSITY ESTIMATE FOR THE BOOTSTRAP
Wwalter Liggett

National Bureau of Standards
Gaithersburg, MD 20899

Although a bootstrap based on resampling without replacement
can be performed in the case of several small samples, a
bootstrap based on a pooled density estimate is preferable if
pooling is appropriate. 1In the case considered, the data consist
of a few measurements on each of several dissimilar items, and
the measurement errors are independent and identically
distributed. The pooled error density estimate discussed is
computed from first and second differences between measurements
on the same item. Only first differences ana therefore, only
duplicate measurements, are needed if a symmetric error density
is assumed. An error density that is possibly skewed requires
triplicate measurements on some items. The error density
estimate is based on the orthogonal expansion in Hermite
functions and on the relation between the characteristic function
of the error and the characteristic functions of the differences.
A bootstrap based on this density estimate is applied in the case
of items each measured three times. In this case, robust
estimates of the item values can be computed. Several functions
of the item values are potentially of interest. The range of the
item values is considered. This is an interesting example
because of the effect on this statistic of stretched-tailed
error. Even with a robust estimator, the range of the item
values is affected by stretched-tailed errcr because of the fact
that robust estimators for samples of size three are not
resistant to multiple contamination.
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Computational aspect of harmonic signal detection

Keh-Shin Lii

Tai-Houn Taou
Department of Statistics
University of California, Riverside

Detecting harmonic signal in a noisy enviroment is a classical problem and an important one.
Typically, the poise process is assumed to be Gaussian. Therefore the analysis is mostly based upoa
second order theory such as covariance or periodogram. There are situations where the noise process is
non-Gaussian then we can take advantage of the information contained in the higher order moments to
possibly increase the efficiency of detecting the presence of harmonics.

This paper explores a method using both second order and higher order spectrum to ascertain
the number of harmonics in the presence of non-white and non-Gaussian noise. Computational methods
is discussed. Simulation examples are presented to indicate the effectiveness of the method in
comparison with the classical second order methods.
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IT'S TIME TO STOP

Hubert Lilliefors
George Washington University

This paper addresses the problem of determining the sample
size to be used (when to stop sampling) when using a simulation to estimate the quantiles of the
distribution of some statistic. Recently Dallal and Wilkinson (1986) used a procedure which started
with a sample size of 50000 and computed a 95% confidence interval for the 99th quantile. If the width
of the interval was less than some prescribed width (they used .001) they stopped. Otherwise they
added another 50000 to the sample and tried again. This continued until either their condition was
satisfied or they reached an upper limit on the sample size.

In this paper we present alternative procedures for determining when to stop the simulation
which under certain circumstances may have some advantages over the Dallal and Wilkinson
procedure. A simulation was used to compare the various procedures when estimating quantiles of
several distributions.

For the alternative procedures, we make use of the well known asymptotic (normal)
. distribution of sample quantiles. Using this distribution it is straightforward to show that if we require
a 95% probability that the sample quantile is within a distance B of the population quantile, then the
sample size required is n=p(1-p)(1.96/Bsf(x))++2, where x is the pth population quantile. We need an
estimate for the density function evaluated at the population quantile.

Basically two estimators were used. These were the Siddiqui estimator (1960) and a new least
squares estimator. We tried two basic procedures. 1.The first is a two stage procedure in which a
preliminary sample was used to estimate the density function, which was used to calculate the required
total sample size. From this the size of the additional sample size needed is determined. This second
sample is drawn and the estimate for the quantile is determined using the two samples. 2. The second
procedure is a three stage procedure in which, after the second sample is drawn,we again estimate the
density function and if a larger sample is determined to be necessary we draw another sample.

The basic conclusion is that any of these procedures works reasonably well. Under certain

circumstances our alternative procedures give improved results. In addition,they require stopping only -

once or twice to determine what additional sample size is needed. The Dallal and Wilkinson procedure
will probably require many more such determinations.
References

Dallal, G.E. and Wilkinson, L. (1986), “An Analytic Approximation to the Distribution of Lilliefors’s
Test Statistic for Normality”, The American Statistician, Vol 40, No.4, 294-296

Siddiqui, M. (1960), “Distribution of Quantiles in Samples from a Bivariate Population, J. Res. Nat
Bur. of Standards, B64, 145-150
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A MODEL FOR INFORMATIVE CENSORING
William A. Link
Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel Md. 20708

Suppose that T,,T,..... Ty is a random sample of “lifetimes™ (non-negative continuous random
variables) with common survival function 5(t) = P(T > t). We consider the problem of estimating
S(-) when the T's are not directly observable; rather, one is able to observe (X,.6,),(X5.65),....(Xn.8n)
where X; < T; and §; is a binary random variable equalling one if X; = T, and zero otherwise.

The problem of estimating a survival function in the presence of random right censoring has been
extensively studied. The majority of research has centered on the independent censoring model, in
which C,,C,....,.Cn are “censoring times”, independent of T,,T,,...Tn , and X; = min (T;,C;,). Under
this model, the Kaplan-Meier Estimator (KME) is the appropriate estimator of S(-).

It is not difficult to envision situations in which the assumption of independent censoring is
inappropriate. However, if the only observations available are the pairs (X,5), the independence
assumption is completely untestable. It has been shown by Cox and Tsiatis that “there always exist
independent censoring models consistent with any probability distribution for the observable pair
(X.6)" (Lagakos). The consequence of this is that if it is believed that the independence assumption is
unwarranted, an equally untestable assumption about the joint distribution of (T.C) must be made.

If, however, covariates are observed in addition to (X,§) the situation improves. We consider a
model in which the population is divided into “high-risk® and “low-risk™ subpopulations and in which
censoring only occurs on lifetimes in the “high-risk™ group. The *high-risk™ subpopulation has hazard
function Ay(+) = mA(:), where A(-) is the population hazard function and m is an unknown constant.
Under this model. the KME yields substantial overestimates of S.

We consider an alternative estimation procedure in which the parameter m and the survival

function are estimated by self-consistency algorithms.

99




Abstract

Brenda MacGibbon, Susan Groshen, Jean-Guy Levreault, Numerical Algorichms for
Exact Calculatjons of Egarly Stopping Probabilities in One-Sample Clinical
Irials with Censored Exponential Respongsesg *

For some cancers, the existing treatment regimens produce long-term
disease-free survival rates of 80% or better. In this situation a new proto-
col may aim to reduce the amount or duration of treatment, while maintaining
the high disease-free survival rates. Although the primary goal is to
evaluate the specific morbitity of such a new protocol, it is desirable to
".develop rules to stop the trial if many patients die or relapse early in the
study and to study the statistical properties of these rules numerically.
Since the failure (death or relapse) or success (survival) of the nth patient
is not usually observed before the (n+l)at patient is entered onto the proto-
col, most developed sequential techniques do not apply to the problem. Most
group sequential techniques involve large sample results, inappropriate for
small studies. If the survival times of the patients follow an exponential
distribution and the entry times into the trial are Poisson, and if these are
independent, then a pure birth-and-death process with a well-defined
transition matrix is an appropriate model. Analysis of the process enables
the expression of error rates in terms of the transition probability matrix
and renders these calculations computationally feasible, A conceptually
simple design for wmonitoring a trial, in which a new treatment is evaluacted
after each observed failure, is presented and algorithms to calculate the
error rates of interest are given. Algorithms for the calculation of the
average sample number (ASN), the median and the quartiles of the sample size,
as a function of the ratio of the entry rate to the failure rate, are con-
structed. Finally, the methods are illustrated on two examples involving the
design of pilot studies.

* To be presented by Brenda MacGibbon, Department of Decision Sciences and
Management Information Systems, Concordia University, Montreal, Canada.
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A CLOSER LOOK AT
SYMBOLIC COMPUTATION

William M. Makuch
John W. Wilkinson

Corporate Research and Development
General Electric Company
Schenectady, New York
and
Decisions Sciences & Engineering Systems Department
Rensselaer Polytechnic Institute
Troy, New York

ABSTRACT

For many, symbolic computation, is nothing more than a frustrating
experience. The machine returns screen after screen of unmanageable expressions or
fails on even the most simpliest of calculations. The typical novice user eventually
questions the utility of a computer algebra approach. The problem here is generally -
not the capabilities of the symbolic system, nor is it the user’s grandiose expectations.
The problem is one of understanding the symbolic computation software and being
able to successfully comunicate with it. This paper presents an initial exposure to
some of the lesser known details which must be understood if the user intends on
using symbolic systems bevond the elementary level.
An introductory level understanding of what a symbolic computation system
can do is assumed. This paper then attempts to add a more complete understanding
of symbolic representation, functional dependencies, evaluation, and simplification.
The relevance of these topics to the computing statistician, as well as the strengths and
limitations of computer algebra approaches, are also discussed. The MACSYMA
system is used for illustrative purposes.
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A NON-RANDOM WALK THROUGH FUTURES PRICES OF THE BRIT!SH POUND
willlam S. Mallios ’
Califcrnia State University, Fresno

During 1984-86, foreign currencies reached record Iows against the
dotlar, then recovered erratically. The period was characterized by high
volatility and enormous i0sses. In such periods, currency modelling--for
curposes of short term forecasting--would seem a natural recourse.
However, results of such modelling appear infrequently in the literature.
Possible reasons are (i) that random walk theory prevails {in reality or as
aresult of inadequate mcdelling) or (ii) that viable models are not
oublicized. Autoregressive-integrated- moving average (ARIMA)
modelling, when applied to forecasting a particular currency without
regard to relevant, contemporaneous variables, tends to support random
walk theory. Such results are, however, misleading due to interrelations
Cetween leading currencies, precious metals, and their respective open
‘nterest.

To allow for such interrelations, a reduced system of equations is
acclied  Zach cecendent ariable may te affected by its own 1ags and
'3Gged shocks and/or these of other dependent variatlec, either in terms
cf first order or higher @~ :2r modelling. Higher order terms include

mteractions between ' 2 cariables Analysis rasults for the British
sound 2t therar it Lt ~ocel and support the nction of second order
~odelling Ltiibzatie o ooorenformation i undating the megel 1s
crasentedin terms of = litica! Bayes estimation.
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RANDOM VARIABLES FOR SUPERCOMPUTERS

George Marsaglia

Department of Statistics
The Florida State University
Tallahassee, Florida 32303
(904-644-3218)
(marsagi@FSU)

A discussion of methods for generating random variables in supercomputers, particularly the 205
and ETA 10. Methods that exploit vector processing are well-suited for generating uniform random
variables, both integer and real, and several of them are described. For non-uniform variates, however,
methods that have proved best for conventional computers do not readily yield to vector methods. For
example, the best methods for normal or exponential variates in conventional computers take less than
1.2 T, where T is the time for a uniform variate, yet in supercomputers those methods take relatively

much longer. Different approaches to reducing these times will be discussed.
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Maximum Queue Size and Hashing with Lazy Deletion

Claire M. Mathieu! and Jeffrey Scott Vitter?

Abstract. We answer questions about the distribution of the maximum size of queues and
sweepline processes. Queuing phenomena are widespread in the fields of operating systems,
distributed systems, and performance evaluation. Queues also arise directly as constructs
in computer programs, for example, in the form of sweepline data structures for geometric
applications, buffers, dictionaries, sets, stacks, queues, and priority queues. The concept of
“maximum” occurs in many issues of resource allocation. If the size of the queue represents
the amount of resource used by a computer program or a systems component, then such
information is important making intelligent decisions about preallocating resources.

In this paper we study general birth-and-death processes, the M/G/co model, and a non-
Markovian process (algorithm) for processing plane sweepline information, called hashing with,
lazy deletion (HwLD), introduced recently by Vitter and Van Wyk in Algorithmica. It has
been shown that HwLD is optimal in terms of expected time and dynamic space, up to a
constant factor; our results show that it is also optimal in terms of expected preallocated space.
Our results also show strong links between the maximum sizes of continuous phenomena and
of their discrete counterparts.

We obtain an array of results about the maximum queue size using two independent
approaches. In our first approach, we develop several formulas for the distribution of the
maximum queue size for general birth-and-death processes (which includes the M/M/oco pro-
cess) and HwLD. The formulas provide exact numerical data on the distributions, and in
some cases lead to asymptotics as the time interval grows. There is a common underlying
structure in the formulas for the different models: the transform of interest in each case is
the ratio of consecutive classical orthogonal polynomials. And the particular polynomials
involved give a strong link to the maximum size of file histories, as studied combinatorically
by Flajolet, Frang¢on, and Vuillemin.

In our second approach, we get optimal big-oh bounds on the expected maximum queue
size in the general M/G/> model (which includes M/M/oc as a special case) by using non-
queueing theory techniques from the analysis of algorithms. We approximate the maximum
que-:e size (and, in the case of HwLD, also the maximum data structure size) in a novel way
by sums of discrete quantities related to hashing, specifically, maximum slot occupancies.
(The hashing in our approximation scheme has nothing to do with the hashing inherent in
HwLD.) Our techniques also seem applicable to other queueing models, such as M/M/1.

! Current address: Laboratoire d'Informatique de |'Ecole Normale Supérieure. 45, rue d'Ulm,
75230 Paris Cedex 05. France. Research was also done while the author was at Princeton
University and funded by a Proctor Fellowship.

? Current address: Department of Computer Science, Brown University, Box 1910, Providence.
R. . 02912. Research was also done while the author was on sabbatical at Ecole Normale
Supérieure and INRIA. Support was provided in part by NSF research grant DCR-84-03613.
by an NSF Presidential Young Investigator Award with matching funds from an IBM Faculty
Development Award and an AT&T reseaggh grant, and by a Guggenheim Fellowship.




INTRODUCTION TO PACKET-SWITCHING NETWORKS

Jeffrey Mayersohn
BBN Communications Corporation
50 Moulton Street
Cambridge, Massachusetts 02238
(Electronic Mail: mayersoh@ALEXANDER.BBN.COM)

ABSTRACT

Communications networks allow transmission resources to be shared by a large
population of users. Packet switching is a particular type of network
technology in which the data to be transmitted are divided into discrete
units, called packets. These packets independently travel from the source to
the destination, where they are reassembled into their original form. Among
the mathematical problems associated with packet-switching networks are the

- design of optimal network configurations and the development of network

control algorithms. An example of the latter type of algorithm is routing,
which determines the path that will be taken by each packet through the
network. Another class of problems concerns the analysis of network perfor-
mance. Packet switching will be discussed and examples of solutions to the
above problems will be discussed within the context of the ARPANET, which was
one of the first packet-switching networks.

Application of Posterior Approximstion Techniques
to the Ordered Dirichlet Distribution

Thomas A. Mazzuchi
Refik Soyer

George Washington University

The ordered Dirichlet distribution has been shown to be a meaningful prior
distribution for the analysis of several important problems in relisbility and
biometry. Unfortunately, the relevant posterior quantities can rarely be obtained in
simple closed form. Closed form resuits that are obtained are often complex and
subject to numerical error due to their dependence on the extreme range of the
gemms function. Often numerical error and computation time increase with the
sample size. In this paper we. explore the use of a posterior approximation
technique recently suggested by Tierney and Kadane (1986) in these cases. We thus
illustrate a multivariate application of these techniques as well as a comperison of
the accuracy of these approximation techniques with the closed form solution.
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COMBINING KNOWLEDGE ACQUISITION AND CLASSICAL STATISTICAL TECHNIQUES
IN THE DEVELOPMENT OF .\ VETERINARY MEDICAL EXPERT SYSTEM

Dr. Mary McLeish
Departments of Computing and Information Science/Statistics
University of Gueiph
Guelph, Ontario
N1G 2W1

A project was recently begun as the University of Guelph between the departments of Computing Science,
Statistics and the Ontario College of Veterinary Medicine. Equine colic was chosen for a prototype domain, due to
the diagnostic difficulty of predicting true surgical cases. Unnecessary surgeries are costly and can have long term
debilitating effects on a productive animal. A sophisticated medical information system at OVC has been in opera-
tion for 10 years and has collected a vast amount of on-line medical data. Many test results are fed automatically
into the database. It was our intent to design a system which was largely driven by rules and information
extracted from this enormous statistical source.

The role of probability and statistics in the development of expert systems is discussed in books such as
"Artificial Intelligence and Statistics”, by W.A. Gale. The methodologies employed by the early large medical pro-
jects, like MYCIN (Stanford), often used ad-hoc factors to combine uncertain information and were concerned pri-
marily with imitating the mental reasoning processes of doctors. In a recent paper by Drs. Patil, Schwartz and
Szolovits in the New England Journal of Medicine (Vol. 16, 1987) it is suggested that it is time to link the old with
the new -the old being classical statistical routines, such as discriminant analysis. To quote, "now that much of
the A.l. community has turned to causal, pathophysiologic reasoning, it has become appareat that some of the ear-
lier, discarded diagnostic strategies may have important value in enbancing the performance of new programs ..."
To successfully merge the different available approaches is a difficult one, which these authors recognize when they
state that "an extensive research effort is required before all these techniques can be incorporated into a single pro-

gram".

The project at hand is using a variety of data analysis techniques, uncertainty management tools aad humaa
expertise to build the type of system just suggested. Discriminant analysis techniques were tried on data sets
involving 45 input parameters in two groups: clinical data, such as pain, temperature, pulse, results of rectal exami-
nations, and pathology data: total cell counts, protein levels, ete. The most significant variables were two very
subjective measures: pain and abdominal distension. The pathology data did not seem to influence the decision
process, The decision tree obtained produced a tendency to over-operate.

[
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In an attempt to discover other relevant parameters and not discount the pathology data a number of other
knowledge acquisition techniques not assuming linearity or normality of variables were tried on the same data.
These included an event-covering method {Dr.Chiu and A. Wong, Pattern Analysis group, U. of Waterloo), an
inductive learning technique (Dr. L. Rendell, University of lllinois, Urbana Champaign) and the learning (max
entropy) approach of R. Quinlin (University of Sydney). These routines did discover other significant factors in the
clinical data and interesting relationships between variables (clusters). They also discovered significant factors in
the pathology data. Some of these methodologies were less sensitive to missing data than statistical routines, like
discriminant analysis. With some methods, missing data was a very serious problem. As we were not doing
analysis to strictly publish the statistical resuits, but to aid us with over-all diagnostic strategy, we constructed
new data sets with estimated missing values. Logistic regression was run on the new data sets to compare results
with the earlier discriminant analysis and this generally gave more informative resuits.

Other techniques being tried include a Bayesian inductive technique due to Peter Cheeseman. This provides
interesting data classifications not dependent on any form of similarity nieasure (distance etc.). These results may
be used in a predictive manner e.g. by noting the occurrence of surgeries in a class and using this as an indicator
for an incoming case found to belong to that class. )

The above mentioned methods usually discard variables of low predictive power. The uncertainty manage-
ment techniques, often used in expert systems. include all symptoms and provide mechanisms for combination of
evidence. Bayesian approach, Dempster-Shafer theory, etc). We are now implementing a ‘fuzzy approach (using
fuzzy relations) somewhat like that used in the CARDIAG system in Austria. This is partly to test whether
methods working with very few variables are as useful for diagnostic purposes as methods including all possible
symptoms.

We are now undertaking the difficult task of integrating results from these various methods with medical
expertise to build an on-line system and test it on incoming cases. The full paper will describe the methodologies
and results in more detail along with the design of the expert system.
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SMOOTHING IRREGULAR TIME SERIES

by

A. Ian McLeod
Dept. of Statistical and Actuarial Sciences
The University of Western Ontario
London, Ontario, Canada, NSA 3B9

Keith W. Hipel
Departments of Systems Design Engineering
and Statistics and Actuarial Science
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

and

Byron Bodo
Water Resources Branch
Ministry of the Environment
135 St. Clair Avenue West
Toronto, Ontario, Canada, M4V 1PS

ABSTRACT

In 1979, Cleveland introduced the method of robust locally weighted regression for smoothing data
(ze.ye)y t=1,.,n. This method is extended to handle irregularly spaced-seasonal time series, The
smoothed value for the rth year and mth month is represented as
z.rm = /'.‘t - ‘3r' - ‘}mm - ;'.n‘
where 1,, 4,, :4,, and -, , are determined by robust locally weighted least squares. Efficient APL pro-
grams for implementing this procedure are developed. Tests for the absence of moving seasonality
(Hq:~, m=0) and for the absence of trends (N,:a, ==, ,, =0) are developed by bootstrapping the regression.
The usefulness of the new methodology for interpreting environmental water quality parameters is dis-
cussed.
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SIMULATED ANNEALING IN THE CONSTRUCTION OF OPTIMAL DESIGN

Ruth K. Meyer
Business Computer Information Systems
St. Cloud State University
St. Cloud, Minnesota

Christopher J. Nachtsheim
Department of Management Sciences
University of Minnesota
Minneapolis, Minnesota

ABSTRACT

Exact optimal designs have generally been constructed using a
finite design space and various exchange algorithms, which
oftentimes converge at a local optimum. Branch-and-bound methods
guarantee optimal designs, but are computationally infeasible for
large problems. We apply the generalized simulated annealing

algorithm to the construction of exact optimal designs on both

finite and continuous design spaces, and evaluate its
effectiveness. We present optimal designs for large dimensional
problems.




Minimum Cost Path Planning in the ¥ ~>4om Traversability Space

P. Gragha,A Meystel
Drexel Umvcmgr .
Philadelphia, PA 19104

Abstract

Random traversability space (RT-space) is introduced and developed as the most general spatial
representation for the path planning system of autonomous robots. It is demonstrated that any physical
spatial situation can be mapped into RT-space, and the quantitative model can be built using the
statistical characteristics of the physical spatial situation. A mathematical abstract model of autonomous
robot is explored which is understood as a dimensionless stochastic automaton pursuing a goal while
modifying its behavior as new information is acquired about its random spatial eavironment. A
formalism for the automaton is proposed linking the stochastic input with the description of the
automaton vicinity, and the deterministic output with the motion of the robot-automaton. The flow of
information through the system should provide for minimum cost motion of the robot-automaton
toward the goal.

The computation model of the robot-automaton is of interest. A second (generalized) level of
raversability space is introduced to reduce computational complexity and make tractable the problem
of stochastic minimum cost control. The generalized level of representation is used to guide search in
the original RT-space. A theorem is proven concerned with the assignment of the minimal bounds of
the search envelope. Itis shown that the process of generalization affects the statistical characteristics
of the search space. Comparisons are made between the results of the robot-automaton operation with
different envelopes of search and under different heuristics of search.

A process of recursive generalization is considered in the RT-space which leads to the hierarchical
RT-representation, and to the subsequent recursive hierarchical algorithm of computadon. This is done
with successively smaller envelopes of search and the results are analyzed with respect to relative error
from the optimal path. The system is intended to develop joint hierarchical planning/control sequences
based both upon the knowledge stored in the memory and/or acquired during the robot-automaton
operation. The path planning system combines the spatial map of the vicinity and spatal knowledge
about the larger subset of the environment including the final goal, to form a complete state descripton
of the system. A goal-oriented procedure of path planning is then applied which generates a sequence
of states which best satisfies the condition of minimum cost goal goal achievement and is considered
the path. A variety of simulation experiments is considered for different traversability spaces. The
results of comparison are given with the conventional algorithms of dealing with the problem.
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UNBIASED ESTIMATES OF MULTIVARIATE GENERAL MOMENT FUNCTIONS
OF THE POPULATION AMD APPLICATION TO SAMPLING WITHOUT REPLACEMENT
FROt A FINITE POPULATION
by

1.8, Mikhatl
Liberty Universtity

Abstract

Unbiased estimates of the multivariate general moment functions
of the population are obtained when sampling from finite populations.
Partitions and power sums are featured. Unbiased estimates of

multivariate cumulants and moment functinns are obtained as examples of
application,
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Symposium on the interface: Computer Science and Statistics

ABSTRACT

P. Warwick Millar
univ. of Calif.
Berkeley, CA 94720

STGCHASTIC TEST STATISTICS

Stochastic procedures are tests, estimates, or confidence sets which have two
properties: (a) they are functions of the data sample plus an auxiliary random sample
(0) they become nearly non-randomized as the sample sizes increase. Such procedures
arise as numerically feasible, computationally intensive,approximations to numerically
intractable procedures . They often involve iterated bootstrap techniques together

with random searches over abstract populations.

d

Let ng. 9e<gjoe a family of probabilities on R°. A plausible test statistic for

. . ) . =
the null nypotnesis that the correct model is fPQ,OQEBI might be: G, ¥

inf sup thPn(A) - PQ(A)l where the sup is over all half-spaces in Rd and Pn is
¥ A

tne empirical measure. Of course the null hypotnesis would be rejected for large
values of G . In most cases of interest, wnere d 22 and ® is "infinite dimensional!

(i.e., nonparametric) tne statistic G, is virtually uncomputable. A related stochastic
goodness of fit statistic with attractive asymptotic properties consists in (a)
replacing the inf in tne definition of G by a minimum over a random collection of

9's, consisting of Jn bootstrap repllcas of a preliminary n consistent estimator
of 9, and (p) replacing the sup by a maximum over k_ sets cnosen at random. Val "

critical values can then be ootained by bootstrap applied to this (computationally
feasible) stochastic GUF statistic. These stochastic GWOF statistics have been
analysed in detail for ~wo varticular non parametric models PQ : location models

on Rd, d~2, and the loglistic medel.

This talk surveys scme of these recent results.
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BOOTSTRAP PROCEDURES IN RANDOM EFFECT HOdELS F: PARING
RESPONSE RATES IN MULTI-CENTER CLINICAL °

Michael F. Miller, Ph.D.
Hoechst-Roussel Pharmaceuticals Inc
Somerville, N.J. 08876

Let <P(j), Q(j)>, j=1,2,--k be population plac treatment
response rates (probabilities) at each of k center: ti-center
clinical trial. Let L(j) = <LP(j), LQ(J)> be the ¢ ling logits
(In(P/(1-P)) of P(j), Q(J) respectively. In this st L{J)'s are
assumed to be random vectors, i.i.d., having common p.d.f. qg.

Letting gp, gq denote the marginal p.d.f.’s of LP, L an the no
treatment effect null hybothesis proposed here is g, The estimated
Togits from placebo and treatment patients at each ce - are given by
LH(J) = <LHP(J), LHQ(j)>, j=1,2,--k. Conditioned on : , the
distribution of LH(j) is approximately bivariate normal with mean L(j)
and diagonal covariance matrix Dj containing the estimated variances of
the estimated logits. Based on the chserved LH(j)'s, estimates of the
joint p.d.f. g, and hence gp, gq, will be investigated. Appropriate
functionals of these estimates will be used to compare gp and gq. The
sampling distributions of these functionals (means, weighted
percentiles) will be studied using a two stage bootstrap simulation:
generate population logits from the estimate of g, then generate
success/failure data for each center conditioned on these population
logits. A discussion of the computer implementation of this methodology

will be presented along with an analysis of real clinical trial data.
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Title: Computation of the Theoretical Autocovariance Function of
Multivariate ARMA Processes

Author: Stefan Mittnik

Address: Department of Economics
SUNY at Stony Brook
Stony Brook, NY 11974-4384

Phone: 516-632-7532

Abstract ,

The theoretical autocovarfance function is an important instrument In
time series modelling. The derivation of the exact likelihood function of
ARMA models requires the specification of the theoretical autocovariances in
terms of the model parameters. The autocovariance function plays also a
crucial role in model identification procedures. Nicholls & Hall (1979)
provide a closed form expression for the theoretical autocovariances of
multivariate ARMA models. Ansley (1980) and Kohn & Ansley (1982) present
rather complex algorithms which are computationally more efflclent than the
one in Nicholls & Hall (1979).

Here we suggest simpler closed form expressions that provide more
insight into the relationship of autocovariances and ARMA parameters. They
are particularly useful when estimating moving average parameters via
factorization methods and in evaluating the exact maximum llkelihood
function of ARMA models. The results enable us to compare the algorithms of
Nicholls & Hall (1979), Ansley (1980) and Kohn & Arsley (1982) by flitting
them into a general framework.

References

ANSLEY, C. F. (1880). Computation of the theoretical autocovariance function
for a vector ARMA process. J. Statist. Comput. & Simul. 12, 15-24.
KOHN, R. & ANSLEY C. F. (1982). A note on obtaining the theoretical auto-
covariances of an ARMA process. J. Statist. Comput. & Simul. 15,
273-83.

NICHOLLS , D. F. & A. C. HALL -(1979). The exact 1likelihood function of
multivariate autcregressive-moving average models. Biometrika 68,
259-64. :
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Abstract On
Increasing Reliability of Multiversion
Fault-Tolerant Software Design by Modularization

Junryo Miyashita
Departaent of Computer Science
California sState University at san Bernardino

Fault-tolerant software achieves its fault-tolerance by
introducing redundancies in software. Well Kknown Fault-Tolerant
software designs are: 1) N-version programmings, 2) Recovery Block,
and 3) Consensus Recovery Block. These designs all use several
versions of a program to achieve their reliabilities. They shall be
refered to as "multiversion fault-tolerant software design”. One
problem of developing multi-versions of a program 1is the high cost
of development. This paper addresses that problem. Rather than
working on the common requirement specification for a whole proqram,ll
teams of programmers will work on the common specifications for each
module in a program. A program consists of a set of modules. This
will enable the modules in each version to be interchangeable. l

.

Theoretical reliabilities of modularized multi-version fault-
tolerant software are derived in closed forms. The numerical results
of the modularization effects on the reliabilities on the three well
known multi-version fault-tolerant software are calculated and t
complete results are given in table forms. The numerical result
show the dramatic increase in reliabilities in each multiversion
softwares. For example:

In N-version programming, Assume R(i,j) = R for all i and j.
That 1is, the reliabilities of each module of each version is
constantly R then for example when R = .90 , 3 (i.e.n=3)original
versions and each version has 2 parts(modules:i.e.m=2) then the
modularization will increase the reliability of the software by 1.7
times compared to N-versions without modularization. When n = 4 and m
= 3 then the increase in the reliability is 5.7. If n=5 and m = 8
then the increase is about 77 times. If R=9.8 and n=5 and m =
then the increase in the reliablity is about 327 times. So th
numerical results indicate that by modularization any increase 1in
number of original versions or increase in the number of modules wil
increase the reliability of the software in significant amounts.

In Recovery Block, the reliability of the software depends on the
reliability of versions as weil as the reliability of the acceptance,
test. If the reliability of the acceptance test is 1low, then n:l'
increase in the reliability of the versions can increase th
reliability of the software much. Assumming that the acceptance test
reliability is very high or perfect, then the modularization will
increase the reliability of the software more significantly thar.
that of N-version programming. Results to this effect will be given
in the tables.

Consensus Recovery Block overcomes the weakness of the Recover
Block by eliminating the heavy dependencies on the acceptance test b
first doing N-version programming.It also eliminates the weakness
of N-version programming on non-agreements by incorporating th
acceptance test in case of non-agreements. The increase in th3|
reliability is more significant than either N-version programnmin
or Recovery Block schemes if the acceptance test is near perfect.
Even 1if the acceptance test reliability is rather low, it still dce
significantly better than Consensus Recovery Block  withou
modularizations.

'I
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ALGORITHMS TO RECONSTRUCT A CONVEX SET FROM SAMPLE POINTS

M. Moore, Ecole Polytechnique and McGill University
Y. Lemay, Bell Canada
S. Archambault, Ecole Polytechnique

Let C be an unknown compact convex set in the plane and suppose the sample
points, X;, ... X, are selected independently according to a distribution function F
on R2 whose support includes C. For each sample point, in addition to its coordinates
it is known if it {s interior or exterior to C. Based on this information {t is
desired to reconstruct (estimate) C. A similar problem, where only uniform sample
points on C are observed, has been considered by Ripley and Rasson (J. App. Prob.,
14, 483-491) and Moore (Ann. Statist., 12, 1090- 1100).

The sample space is made of the vectors (x;. i, ..., %x,, i,) where
x; represents the coordinates of the jth sample point, i; = 1 1if this sample point is
in C and i; = 0 otherwise, j =1, ..., n. Let H denotes the convex hull of the

sample points x; for which i; = 1 (interior points) and let

K= e (X: x = %3 + (x4 -y), yeH, A z0) *

3

where E = {(j: i; = 0). The unknown convex set C includes H and i{s included in
the complement of K. Let V be the set of vertices of H and T be the set of
peaks of K (a peak is a sample point outside C whose removal would change K). It
can be shown that the pair (V,T) is a minimal sufficient statistic for the family
{Pc; C € ),8being the class of compact convex sets in the plane and P is the
probability measure on the sample space given C and the distribution F. A natural
criteri. to evaluate a reconstruction rule § |is

(1) R[C,S] - E[ll(CAs(xx. 11 “ ey x“. in))]v

m denoting the Lebesge measure and the expectation being with respect to Pc. It
seems difficult to obtain a procedure §* based on (V,T) which is in some sense
optimal with respect to (1) (e.g. mimimax).

In this paper we propose three algorithms to reconstruct C. In increasin
complexity order these reconstructions are:

a) a dilation of H by a unique factor determined by V,

b) a deformation of H obtained by applying a particular dilation factor to each side
of H; these dilation factors being determined by the appropriate elements of V.

c) an average (Minkowski addition) of two reconstructions, the first being simply H
and the second being obtained mainly from V.

By a simulation experiment these algorithms are compared using a criteria related
to (l1). The algoricthm c) is quite complex and requires much geometrical computations,
but presents definite advantages in regard to precision and stability.
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Block Truncated-Newton Methods for Parallel Optimisation

Stephen G. Nash
Ariela Sofer

Operations Research and Applied Statistics Department
George Mason University
Fairfax, VA 22030

ABSTRACT

Truncated-Newton methods are a class of optimisation methods suitable for large-
scale problems. At each iteration, a search direction is obtained by approximately solving
the Newton equations using an iterative method. In this way, matrix costs and second-
derivative calculations are avoided, hence removing the major drawbacks of Newton's
method. In this form, the algorithms are well-suited for vectorisation. Further improve-
ments in performance are sought by using block iterative methods for computing the search
direction. In particular, conjugate-gradient-type methods are considered. Computational
experience on & hypercube computer will be reported.

116




An Example of the Use of a Bayesian Interpretation
of Multiple Discriminant Analysis Results

James R. Nolan
Siena College

The use of Bayesian statistics to add additional informatiom about the
results of a binary dependent variable multiple discriminant analyais
will be detailed using a recently completed study.

Several methods are examined for determining the best discriminant
function, e.g. Wilks' Lambda, eigenvalues, canonical correlation. The usual
procedure is to then examine the "confusion matrix™ and draw conclusions about
the predictive power of the discriminant function. Par more information can be
obtained by employing Bayesian statistics to examine, for any actual or
hypothetical case, the probability of obtaining a particular value of the
binary dependent variable. Thus one can obtain, on a case by case basis, a
measure of the "strength” of the discriminant function predicted value of the
discrete dependent variable.

Details about the computer statistical software package utilized for
this analysis will be given and several pages of output will be available in

the form of handouts.
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Comparison of "Local Model" Classification Methods

Daniel Normolle
Department of Biostatistics

University of Michigan

A large Monte Carlo study is reported that compares three "local"
methods (Classification by Kernel PDF Estimation, Cross-Validated
Nearest-Neighbor Classification, and Tree Classification with
Pruning for Optimality), a benchmark method (Bayes'
Classification Rule), and three "global" methods (Linear
Discriminant Analysis, Logistic Regression, and Quadratic
Discriminant Function on Normal Scores) with respect to their
.ability to correctly classify test samples.

The data are drawn from a 5x2x2x2x3 completely crossed design,
where the levels of analysis are Distribution Type (Gaussian,
Cauchy, Lognormal, Bimodal, Uniform), Dimension (2, 6), Class-
Conditional Dispersion (Equal, Unequal), Separation of Classes
(Low, High), and Training Sample Size (40, 80, 160). Each design
cell is replicated 100 times, yielding a total of 84,000
classification runs. Thus, the experiment compares three local
methods, each with an associated optimizing procedure, on level
ground over a wide variety of data situations. The results of
the experiment are described using statistical techniques (e.g.,
MANOVA) and graphical techniques, such as Andrew's curves.

The nearest-neighbor and classification tree methods are found to
be roughly equivalent, with the nearest-neighbor preferable on
well-separated data, and the classification tree better with
larger sample sizes. PDF Estimation is superior to the other two
local model methods on the two-dimensional data, but weakens
considerably on the six-dimensional data. The three local model
methods are superior to the ordinary Linear Discriminant Function
on non-Gaussian data, but are bested by the use of the Quadratic
Discriminant Function on the Normal Scores almost uniformly.
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Mice, rain forests and finches:
experiences collaborating with biologiscts

Doug Nychka
North Carolina State University
Department of Statistics

In the first part of this talk I would like to discuss
.some of my experiences working with biologists in cancer research,
tropical ecology and population genetics. Besides describing some
of the new statistics that have been developed, the role of
computing in these projects will also be stressed. With the
proliferatfion of microcomputers, researchers are often able to *
collect novel experimental daca. It is a challenge to
statisticians to develop the tools to alalyze these more complex
experimental results. The second part of this talk will give some
details about using projection pursuit techniques for estimating
fitness surfaces in population genetics. When the smoothness of
the ridge functions is chosen adaptively by cross validation,
projection pursuit becomes a computationally intensive technique.
As an example, the overwinter survival of song sparrows is related
to various morphological measurements. This relationship is
important because it may suggest what characteristics are being
favored through natural selection.

Image Analysis of the Microvascular System
in the Rat Cremaster Muscle

by
C. 0'Connor, P. 0. Harris, A. Desoky, and G. Ighodaro

A VAX-based image processing system has been developed for the digitiza-
tion and analysis of the microvascular system in the rat cremaster muscle.
These are images of nlood vessels which are less than one millimeter in dia-
meter. The purpose of this system is to obtain quantitative morphometric

data on the microvascular system which cannot be easily obtained by manual
methods. Animal studies have shown that microcirculation can be used in the
detection of certain systemic vascular disceases such as diabetes mellitus

and hypertension. These diseases involve major disturbances in the dimensions
and the distributions of microvessels. The developed techniques are being
used to determine the blood vessel distributions for a number of samples.
Statistical testing will be made on samples of images comprising diseased and
nopd?seased animals, to determine which image compcnent parameters best dis-
criminate diseased and nondiseased samples. '
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Statistical Computing on a Hypercube
George Ostrouchov, Oak Ridge National Laboratory

A hypercube parallel computer is a network of 2" processors, each with only
local memory, whose activities are coordinated by messages the processors send
between themselves. The interconnection network corresponds to the edges of an
n-dimensional cube with a processor at each vertex. Some recent experiences and
results in developing a hypercube algorithm for iterative proportional fitting of
large Poisson regression problems will be discussed. The algorithm is implemented
on a 64-processor INTEL {PSC hypercube.

Empirical Likelihood Confidence Regions

Art Owen
Dpartment of Statistics
Stanford University

An empirical likelihood ratio function is identified and used to obtain coufidence regions for
vector valued statistical functionals. The result is a nonparametric version of Wilks’ (1938) theorem
and a multivariate generalization of Owen (1987). Cornish-Fisher expansions show that the empirical
likelihood intervals for a one dimensional mean are less adversely affected by skewness that are those
based on student’s { statistic. An effective computational strategy is presented for maximising the
empirical likelihood ratio function. The main tool is a dual problem of smaller dimension for which
there are algorithms that converge to the unique global solution from any starting point. The
technique is used to justify nonparametric intervals for variances, correlations and regression
parameters.

Newton Methods for B-Differentiable Functions: Theory and Applications

Jong-Shi Pang

Mathematical Sciences Department
The Johns Hopkins University
Baltimore, MD 21218

ABSTRACT

In this paper, we extend the classical Newton methad for solving systems of nonlinear
equations to the class of problems with B-differentiable functions. Such functions were
defined by S.M. Robinson and possess differentiability properties weaker than Frechet-
differentiability. We demonstrate that all the basic convergence properties of the classical
Newton method and its many modifications are preserved in the extension. We discuss
applications of the results to many problems in mathematical programming. These appli-
cations lead to interesting second-order sctive-set-Newton-combined methods for soiving
the problems discussed.
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Abstract for:

An Approximate Confidence Interval for the Optimal Number of
vamnograpny X-ray (nits A0 g DAY T dhil. YRiLhy Meroelitan hres
The American Cancer Society was interested in geographically
locating mammeography x-ray units in a five county area of the Dallas-

Fort Worth metropolitan area based on 1980 census tract data
consisting of the x,y co-ordinant location (adjusted to reflect real
distance) of 376,256 women aged 35 to 65. We decided to determine an
approximate confidence interval for the number of units that would be
needed to insure proper coverage of the area and yet be cost
effective,

This is a clustering problem in which the optimal number of
clusters (tne number of units that the area can support) needs to be
determined along with their respective cluster centers (the locations
of tne units). The quality of any clustering is measured by a loss
function which takes into account both the cost of operating the units
and tne cost associated with the likelihood of a woman not using one
of the units. Peck, Van Ness, and Fisher (1988) have shown that a
"best" clustering can be obtained by minimizing this loss function.
They have also developed a bootstrap-based procedure for obtaining
approximate confidence bounds on the number of clusters in the "best”
clustering.

In this problem, the two cost functions can easily be determined.
The first cost function can be determined from the fact that the units
cost approximately $300,000 for startup and $100,000 per year for
personnel and maintenance. It can be argued, that the other cost
function is a function of the distance a woman lives from a unit, that
is, women living near to a unit are more likely to use it than women
living further away. Given the cost functions and the census tract
data the approximate confidence interval for the optimal number of
units can be determined along with their corresponding cluster
centers.

Key Words: Cluster Analysis; K-means Clustering; Bootstrap;
Confidence Interval; Simulation Study.
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Statistical Methods for Document Retrieval and Browsing
Jan Pedersen, Xerox PARC, J.W. Tukey and P.K. Halvorse

I will discuss the interaction between statistics and the vision of document retrieval and
browsing currently being developed at Xerox PARC as part of a research initiative examining the
implications of the “paperless office”. Given that filing of exiremely large volumes of textual and
graphical information will soon be feasible, if it is not already so, the problem of “unfiling” will assume

greater importance.

The PARC vision of retrieval favors high band-width interaction with the user rather than the
traditional emphasis on query languages. It is thought that the combination of certain aspects of
computational linguistics to extract a meaningful summary of the content of a document and
interactive subset selection will out perform traditional keyword based queries. [ will discuss one such
retrieval and browsing technique based on content word triples.

Estimation of the variance matrix for maximum likelihood
parameters by quasi-Newton methods

Linda Williams Pickle
National Cancer [nstitute

Garth P. McCormick
George Washington University

Much work has been done to develop methods for solving unconstrained optimization problems
that do not require specification of second derivatives of the objective function, which can be extremely
complex. While the rate of convergence of these quasi-Newton methods to the correct solution vector
has beea shown to be superlinear, little research has been done on the behavior of the convergence of
the inverse Hessian approximation to its true value. These optimization methods are now being used
in new microcomputer statistical packages to calculate maximum likelihood parameter estimates, and
the resulting inverse Hessian matrix is being used as an asymptotic variance estimator for the
parameters. We bave examined the behavior of this matrix approximation for several reptesentative
problems. Comparison of known analytic results to results from the BFGS quasi-Newton method using
an optimal step size suggests that after the first n iterations (o = number of parameters to be
estimated) the matrix approximation then converges at about the same rate as the parameter vector.
We examine several functions useful as candidates for additional convergence criteria to ensure
acciracy of the variance matrix approximation in practice or to identify situations where the
approximation might be poor.
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ABSTRACT

Bxact Power Calculation for the Chi-Square Test of Two Proportions

Carl E. Pierchala
Food and Drug Administration

Incalc.ﬂatugthepwerofthamuscnm-mmtstottwo
independent proportions, it is usual to use an amroxlmatlon. This
can speed up the camputations ard simplify programming. At times,
however, it is useful to directly compute the exact power. For
example, cne may wish to assess an approximation's adequacy in a
specific situation. Thus, an APL program was developed to do exact
power caicuiations on an IEM ¥C/AT. It gives accurate and reasonably
fast camputations. The exact power values for certain circumstances
are campared to the correspording values acbtained using an
approximation based on the arc sine transformation. It is shown that
this approximation is quite inaccurate in some situations. Also, the

is used to demonstrate that the exact size of the test can
differ dramatically from the naminal size.

Bootstrapping the Mixed Regression Nodel
with Reference to

L
the Capital and zg. “lemtari:y Debate

Wilfrid Laurier University
ABSTRACT

This study empirically investigates the usefulness of bootstrapping the
standard error of estimates of the Hicks-Allen elasticity of substitution
{AES) as obtained from the Mixed Regression model, with specific reference
to the capital-energy complementary debate. This is accomplished by obtai-
ning the bootstrap standard error of estimate of the AES for capital and
energy in the cost-share equations when homogeneity and symmetry con-
straints are imposed stochastically over 500 simulacion runs as opposed to
deterministically, which earlier studies assumed. Our results show that
the bootstrap provides an accurate method of obtaining the standard error
of estimate (SECE) of the AES while the asymptotic formula can overestimate
the small sample SECE by over 70 .percent. Based on interval estimates of
the AES for capital and erergy the bootstrap SECE cannot reject the substi-
tutability hypothesis even though the point estimate does support the
complementarity hypothesis. The data generating processes used in the
simulations are based on previous studies by Berndt and wood (1975, 1979),
among others.
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ABSTRACT
Classifying linear mixtures with an application to
high resolution gas chromatography
William S. Rayens
University of Kentucky

This paper proposes an elegant, uyet straightforward model for
classifying linear mixtures. A linear mixture is defined as
a random vector y in which the variables are a (nonnegative)
weighted average of corresponding variables, assumed to
characterize g component groups. These weights are referred
to as “mixing proportions”., The model seeks to identify the
mixture constituents and estimate the mixing proportions. It
is demonstrated within the context of high resolution gas
chromatography and the broblem of identifying the

constituents in polychlorinated biphenyl mixtures.

Structure and Finiteness Conditions on Graphs

Neil Robertson
Department of Mathematica
Ohio State University

Graphs are finite objects consisting of two sets, a vertex-set and an edge-set; where each edge is
associated with two (pot necessarily distinct) vertices. Such objects are ubiquitous in the real world
and lend themselves readily to algorithmic questions concerning certain structural properties they may
or may not possess. Through joint work with Paul Seymour of Bell Communications Research over
the past six years a very extensive theory has been developed of certain types of graph structures
studied in combinatorial optimization. Three closely related kinds of theorems have resulted; (1)
structure theorems for which, if a graph does not have a certain type of internal structure then it
possesses an external structure of a certain type, (2) finiteness theorems which say that for a given
external structure there is a finite number of minimal graphs not possessing that structure (obetacles),
and (3) algorithms, running in polynomial time, which given any finite graph and any fixed structure
type either exhibit the structure on the graph or an obstacle to the structure within the graph. These
algorithms are developments of results dating back up to sixty years and answer several longstanding
open questions. They also have some unusual features of interest to the general theory of algorithms
which has been developed so extensively in recent years.




On The Probability Integrals Of The Multivariate Normal;
The 2N-Tree and The Monte-Carle Technfques.
Dror Rom and Sanat Sarkar

Department Of Statistics, Temple University, Philadelphia, Pennsylvania.
Abstract

Two techniques are proposed for computing probability integrals of the
multivariate normal distribution. The first technique is based on the
Zn-tfee scheme and is shown to perform well even for the near singular
dlstribution. The technique emgloys a tree structure to represent the
multivariate density. This representation gives a fast and efficlient
partition of the n-space and in general requires substantially less
computations than other available techniques.

The second technique i3 essentlally a variance reduction {mprovement of
the Monte-Carlo integration method. As a technigque based on simulation the
Monte-Carlo method suffers from rando:: variability, however it is still a
usefull approach when the dimensionality is high. The proposed technique
is shown to reduce the variance of the Monte-Carlo estimator on a wide
interval.

Both technliques can be slightly modified for other distributions and can
be easily programmed and execu;ed on main frame as well as personal

computers. The algori=nmnz and computer programs will be avallable.
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THE EFFECT OF SMALL COVARIATE-CRITERIAON
CORRELATIONS ON ANALYSI3~-0OF-~COVARIANCE
M. Roviney A. van Eve, P, Waod College of Human Development
The Pennsylvania State Universitys University Park, PA 16802

In uncantrolled studies, those studies in which individuals are
nat randomly ass:gned to experimental and control groups but are
members of different levels of cateqgorical variables, analysis of
variance is most often suggested as the appropriate data analytic taal
foar assessing group differences on any dependent or criterion
variabies of interest. When variables may be identified that are
related ta the criterion variable and may act as plausible,
alternative hypotheses analysis af covariance has been suggested. |[n
theory, this analysis may have some effect in "equating" groups
according to their scores an the covariate. Howevers since ANCOVA was
designed to increase the precision aof randomized experiments, at least
two questions arise: 1) Is this technique appropriate in uncantrolled
studies? 2) Must the size of the covar:iate-criterion relationship
meet a minimum value? To assess these questions, a simulation was
performed to ingdicate the degree of bias in the analysis of covariance
under the candition of low covariate-criterion correlations.

The method used in this study looked at the change in the
significance levels of the F-test of the ANOVA by adding a covariate
that has a non-zero, but non-significant correlation with the
criterion variable. By adjusting for nothing other than sampling
fluctuations, an estimate of the degree of bias associated with the
inappropriate selection of a covariate was obtained.

To show the degree of bias intrcduced when controlling for
statistically non-significant relationship, a simulation study was run
in wnich a criterion variable was created by generating a random
normal variate and assigning a group number {either | or 2) to each
value af the variate. A constant was then added to the secand group
ta create tne group difference. The constant was incremented by .:<5
until the difference bLetween the groups became statistically
significant at tre p«.N0l level. Cavariates were then selected bv
generating a set of random variates and selecting those that had
zorrelations ranging *r-m r=.0] to a level just under the p<.03 level
of significance.

The results of --= study showed that By cavarving randam
fluctuation agut oF 3 -s3-=2-°gent variable, one can artificially decreace
tne si12 of F-tesr ze-:-;nator. Thig 13 tantamount t2 an arbitrary
geci1sign tQ make -2 =2 ;- rerm a3f the SMNOVA smaller tn the 3bsence of
any reasgrable c2.s-::2%=s.
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The Effect of Measurement Error in a Machine Learning System

David L. Rumpf
Mieczyslaw M. Kokar

Department of Industrial Engineering and Information Systems
Northeastern University
Boston, MA 02115

ABSTRACT

This paper deals with the problem of reasoning about
conceptualizations (sets of relevant parameters) of physical
processes. The problem is discussed in the context of the COPER
discovery system. COPER conjectures parameters characterizing
physical processes and the functional relationships among them. The
COPER system utilizes the idea of changing representation base to
determine the arguments of invariant functional descriptions. It must
handle two types of uncertainty - about relevance of parameters and
measurement error. A statistics/probability approach has been used to
estimate the effect of measurement error in the COPER system. The
partially adequate results of this approach are presented.

Alternative approaches to the measurement error problem will be

suggested and discussed.
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Maximum Likelihood Estimation of Discrete Control Processes:
Theory and Empirical Applications

John Rust
Department of Economics
University of Wisconsin

Counsider the following “ideatification” or “revealed preference® problem. _We observe data
generated by agents solving infinite horizon markovian decision problems. .At time t each. agent
observes a vector of state variables (x,, ¢,) and chooses an action i, from a ﬁmte- set of alternatives to
obtain a reward which depends on (x,, ¢,, i;) and & vector of parameters 4, Whlfh are kl.u?vn by t'he
agent but not by us. The state variables evolve according to & markov process with transition density
which depends on a vector of parameters (3, #5) also known by the agent but not by us. Our data
consists of independent realizations {i,;, x.;}, t =1, ..., T, for each agent |, I=1, ..., L. Our problem
is to go “backwards” and use this data to infer the unknown parameter vector 0={ﬁ:0,,02,0,}, yhere
B€ (0, 1) is the discount factor. This paper derives a nested fixed point maximum likelihood
algorithm to estimate the unknown parameters of a subclass of these “discrete control processes®. We
show that either as T or L — oo the estimated parameter vector § converges to f-hc true parameter
vector with probability 1 and has an asymptotic Gaussian distribution. In otder. to illustrate the use of
the algorithm, we discuss two empirical applications: 1) a model of optimal retirement of bus engines,
and 2) a model of optimal retirement of humaa beings.

Advanced Statistical Computations Improve
Image Processing Applications
Bobby Saffari
Generex Corporation

Abstract

Modern computer tmaging in conjunction with advanced statistical processing are
responsible for significant advances in the areas of medicine and industrial inspection.

Inspections based on the human eye are {n many cases tedious, inaccurate. and time
consuming. Image processing techniques and computer graphics offer the capability to
overcome these set-backs.

The specific area under consideration (n this paper is the study of hair density vartations
over time. Since hair growth and hair loss occur in a non-predictable and random fashion.
the human eye is practically tncapable of measuring and recording these changes. Statistical
processing and computer imaging have been used to facilitate hair density measurement.
However, the current techniques have certain shortcomings and flaws.

The purpose of this work is to eliminate the current obstacles and introduce new techniques.
These techniques include use of artificial intelligence and local statistical processing such as
histogram analysis and Baysian classification criteria. Also methods to eliminate 3-D
distortion and enviromental variations are introduced.
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Real-Time Classification and Discrimination
Among Components of a Mixture Distribution

Douglas A. Samuelson
international Telesystems Corp.

Wae consider a system in which we collect and analyze, in real time, observations
of a statistic with a multimodal (or mixture) distribution. Such distributions arise, for
example, in collecting service times when serving multiple classes of customers, each
class having a different service-time distribution, at a single service facility. We present
new , computationally intensive methods, free of distributional assumptions, to classify
current and future observations into one of the underlying classes, and to provide reai-
time updating of the classification scheme.

Random Graphs

Edward R. Scheinerman
The Johns Hopkins University

An exciting branch of both graph theory and probability is the study of random graphs. In the
most popular model of random graphs, the vertices of the graph are fixed and edges are inserted
between pairs of vertices at random. Each possible edge is inserted with probability p (or absent with
probability 1~ p) and each pair of vertices is considered independently. Because random graphs are
easy to generate on a computer, one can perform “expetiments” to create and test conjectures about
random graphs. We discuss some of our successes and failures i3 ihis “experimental® process. Our
discussion will include Hamiltonian closure in random graphs and properties of random interval graphs.
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LINEAR COMBINATIONS OF ESTIMATORS OF THE VARIANCE OF THE SAMPLE MEAN

Bruce Schmeiser

Wheyming Tina Song

School of Industrial Enginering
Purdue University
West Lafayette, IN 47907
(317) 494-5422
(schmeise@gb.ecn.purdue.edu)

We investigate linear combinations of well-known estimators of the variance of the sample mean of
strictly stationary time series, including nonoverlapping batch means, overlapping batch means,
standardized time series, and spectral-regression estimators. Bias, variance, and mean squared error are
examined for various processes, estimator types, and estimator paramters using analytic, numerical,
and Monte Carlo methods.
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An application of quasi-Newton methods in
parametric empirical Bayes calculations

David Scott
Department of Decision Sciences and MIS
Concordia University
Montreal, Quebec H3G 1M8

Abstract

There has been a surge of interest in parametric empirical Bayes methods since Dempster, Laird,
and Rubin (1977) showed the applicability of the iterative EM process to hyperparameter
estimation. This process is normally computationally intensive, as at each iteration a posterior
expectation must be calculated. To reduce computation when the hyperparameter to be estimated is
a variance, many researchers (e.g., Wong and Mason, 1985) have used a Gaussian approximation
to the posterior distribution at each EM iteration. The estimated posterior mean is then the mode of
the posterior, which can be calculated using a Newton-type method for function maximization. In
addition, the Gaussian approximation permits the Hessian inverse at the optimum for each iteration
to be used to calculate a new estmiate of the hyperparameter.

This research investigates the use of a quasi-Newton technique, employing a BFGS update, in the
calculation of the posterior mode at each iteration of an EM procedure in an empirical Bayes
problem with an unknown prior variance. We maintain only the Cholesky factor of the Hessian,
and update this factor using a Householder technique due to Gill, Golub, Murrasy, and Saunders
(1974). Thus we never need to decompose the Hessian, reducing from o(n3) to o(n2) the
number of arithmetic operations required at each Newton iteration (where n is the number of
parameters (o be estimated). In addition, the Hessian inverse is readily available through a forward-
and back-solution. For empirical Bayes problems involving many parameters, the computational
savings can be substantal.

We present computational results from empirical Bayes parameter estimation in a paired-comparison
setting.

References

Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, series B, 1977, 39, 1-38.
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Efficient Algorithms for Smoothing Spline Estimation of
Functions With or Without Discontinuicties

by

Jyh-Jen Horng Shiau
Department of Statistics
University of Missouri - Columbia
Columbia, MO 65211

Abstract

In this paper, we present some efficient algorithms for
smoothing spline estimation of an unknown function which |is
smooth except for some known break points, where discontinuities
occur on either the function or its lower order derivatives. For
a problem with n observations, these algorithms require 0(n)
operations for equally spaced knots case and O(n") operations for
unequally spaced knots case. Similar efficient algorithms are
also derived for the ordinary smoothing splines.
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Multiply Twisted N-Cubes For Parallel Computing

T.-H. Shiau, Paul Blackwell and Kemal Efe
Department of Computer Science

University of Missouri, Columbia, MO 65211
Abstract: It is known that by twisting one pair of edges of
the N dimensional cube, the resulting graph denoted by TQ(N)
has diameter N-1 instead of N. In this work, we show that by
twisting multiple pairs of edges as well as pairs of buses
(a bus is defined as a set of edges with certain common
properties), the diameter becomes [2N/31. The resulting
multiply twisted N-cube, denoted by MTQ(N), preserves most
of the desirable topological properties of the ordinary
N-cube for parallel computing. A simple routing method is
presented which can easily be implemented. Finally we
discuss generalizations of MTQ(N) for which the diameters
can be made even smaller in the expense of more complicated
routing. The smallest diameter which can be achieved by this

approach is [(N+1)/2}.

This research is supported in part by AFOSR under Contract
AFOSR-86-0124
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Approximations of the Wilcoxon Test in Small Samples with Lots of Ties
Arthur R. Silverberg .

Food % Drug Administration, Rockville, MD

The Wilcoxon-Mann-Whitney Test for two independent samplies is frequently
used with data having ties. Although, there are computer programs

to calculate the exact test, even for small samples computer packages
use approximations based upon the normal distribution. Comparisons

of the exact and appropriate distributions are found in the literatyre
for a few specific cases. For each of the small sample sizes considered,
all distributions of obtaining ties were considered, as well as all
permutations of the ordering of the ties. The exact distribution,
tabulated value without ties, normal approximations with and withouyt
continuity corrections, and Edgeworth expansions with and without continuity
corrections, were compared.

Application aof Orthogonalizatiaon Procedures to
Fitting Tree-Structured Madels

Cynthia 0. Siu
Jaohns Hopkins University

ABSTRACT

Orthogonalization is an important tool in computations for
linear model. In this paper, applications of Givens rotations and
Medified Cram~Schmidt orthogonalization to tree-structured
regression are discussed. The resulting procedure generalizes
CART ‘s piecewise-ccnstant tree maodel to piecewise linear model.
Great versatilits is offered by this approach: regression tree
medels for gquantitative and binary data can be handled by one
jeneral fit%irg crccedure. In addition, it provides a basis for
implementing . a~ious linear and tree~structured regression
ma2thods under cre framework.
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An Alternate Methodology for Subject Database Planning

Craig W. Slinkman -
Benry D. Crockett
Mark Eakin

University of Texas at Arlington

An important aspect of data administration is strategic data planning. Stra.tegic data planning
is the scheme which an enterprise uses to ensure that its information systems ft.mctlon can support the
managerial objectives of the enterprise. An important component of strategic data planning is the
determination of the subject databases needed. James Martin has suggested a simple ad hoc procedure
for performing this analysis. An alternative procedure is suggested mi.ng SAS to perform a
multivariate statistical technique called correspondence analysis. This technique has the advantages
that it has a strong theoretical justification, yields a numerical measure of the strength of the
subjective database clustering, and is relatively simple to include in CASE software,

Some Numerical and Graphical Strategies for Impiementing Bayesian Methods

Adrian Smith
A. M. Skene
J. E. H. Shaw
J. C. Naylor
S. E. Hills

Summarizing the information in an irregular or multiparameter likelihood in terms of local
maxima and curvature may be extremely misleading. However, the routine implementation of
integrated likelihood methods requires the development of novel, efficient numerical integration and
interpolation strategies, exploiting modern interactive computing and graphics facilities. Progress with
the development of such techniques will be reviewed and illustrated.

Variable Selection in Multivariate Multiresponse Permutation
Procedures

Eric P. Smith
Department of Statistics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24060

Multiresponse permutation procedures (MRPP) of techniques
for analysing data based on the distance betweeen objects.
These methods are useful in applications where the number of
variables of interest may be large relative to the number of
replicates and data may be highly nonnormal. For example, in
studies on the bacteria in the mouth there may be as many as
100 possible species, many of them rare.

Besides an overall test of differences between groups, a
researcher is usually interested in questions about which
variables are important and which groups differ. In this talk
some approaches to the problem of variable selection and
variable importance are discussed. A stepwise procedure for
variable selection is described. Simulation is used to assess
and compare the techniques.
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Gamma P.ucesses, Paired Comparisons, and Ranking
Hal Ste:a
Harvard University

Models based on gamma random variables for analyzing ranked data are considered. These are natural
models for ranking problems in which k objects are ranked according to the waiting time for r events to
occur. A sports competition in which the participants are ranked based on the time until a certain
number of points are scored is an example of such a problem. For these problems, the probability that
k objects are ranked according to a particular permutation can be modeled as the probability that &
independent gamma random vavriables with shape parameter r are ranked in that order. Integer
values of r describe many common situations. Other values of r are introduced by considering an
independent increments Gamma process indexed by r. The value of this process at r can be interpreted
as the waiting time until the r** event even when r is not an integer. For each r, a parametric model
is developed by considering permutations of the values of k independent Gamma processes with

different scale parameters.

The paired comparison problem is a special ranking problem in which only two objects can be
compared at a time. The Bradley-Terry and Thurstone-Mosteller paired comparison models are special
cases of the Gamma process model, corresponding to r equal one and r tending to infinity. In addition,
values of r near zero result in another widely used model. The gamma model provides a unified
derivation of these three models and a continuum of new models in between. The gamma models that

result from particular choices of r are fit to several paired comparison and ranking data sets.
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BAYESIAN ANALYSIS USING MONTE CARLO INTEGRATION --
AN EFFECTIVE METIIODOLOGY FOR HANDLING SOME DIFFICULT
PROBLEMS IN STATISTICAL ANALYSIS

Leland Stewart
Locklieed Palo Alto Research Laboratory

Both a mathematlcal and a graphical description of Bayesian
analeis using Monte Carlo integration will be presented. The capabilities
of this approach will be illustrated by two examples.

In the first exawple this methodologg easily handles rich
multiparameter families of univariate distributions; censored, interval
and binary data; non-conjugate priors; extrapolation uncertainty; and

ghe computation of posterior distributions for cdf's, hazard rates and
ensities. .

In the second example, this approach allows the statistician
to compute the posterior probabilitx for each model in a set of possible
models and therefore to retain consideration of several or many models
tgrouqhggg fhe analysis rather than to restrict attention to just one
'best el.

Similarities and differences between this methodology and the
Bootstrap will be pointed out.

SIMDAT AND SIMEST: DIFFERENCES AND CONVERGENCES

James R. Thompeon
Rice University and M.D. Anderson Hospital & Tumor [nstitute

SIMDAT is an algorithm developed at Rice and the Ballistics Research Laboratory for the
empirical simulation of pseudo-data from a data set of high dimensionality. SIMEST is an algorithm
developed at Rice and M.D. Anderson Tumor Institute for estimating the parameters of a stochastic
process without the generaily prohibitive difficulty (in nontrivial cases) of obtaining a closed form for
the likelihood. Considerations are given for the use of SIMDAT as a part of the SIMEST algorithm.
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SIMULATED POWER COMPARISONS OF MRPP RANK TESTS AND SOME
STANDARD SCORE TESTS
Derrick S. Tracy and Khushnood A. Khan

Cepartment of Mathematics and Statistics
University of Windsor, Windsor, Ontario, Canada

ABSTRACT

To test the hypothesis of random classification versus classifica-
tion according to some a priori scheme, Mielke, Berry and Johnson (1976)
introduced a test based on multiresponse permutation procedure (MRPP).
This test does not regquire assumptions of normality and homogeneity, and
works well for data at ordinal or higher levels, The test statistic is
= gcisi for g subgroups, c; is a suitable weight and Ei is the average
distance for all distinct pairs in the ith subgroup. The distance mea=-
sure is usually 4 = lR(XI)-R(xJ)Iv, where R(X ) is the rank of X in
the combined sample. Corresponding to v = 1, 2, the test statistics
61 ’ 62 and their simulated power performance have been studied for se-
veral underlying populations, e.g., in Tracy and Khan (1987). In this
paper, we compare their powers with those of some standard nonparametric
tests, for example, normal score and signed score tests, Using exten-
sive simulation, conclusions are drawn for various combinations of sam=

ple sizes from several underlying populations.

Mielke, P.W., Berry, K.J. and Johnson, E.S, (1976). Multiresponse per-
mutation procedures for a priori classifications., Comm. Stat. -
Theor. Meth. A, 2, 1409-1424.

Tracy, D.S. and Khan, K.A. (1987). MRPP tests in Ll-norm. Comptl. Stat.
& Data Anal., 3, 373-380.
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Belief Function Computations for Paired Comparisons

David Tritchler
Ontario Cancer [nstitute and University of Toronto

Gina Lockwood
Ontario Cancer Institute

The theory of belief functions has been used to extend the method of paired comparisons to
take into account the varying certainty about the paired choices. These certainties are modelled as
belief functions and are incorporated into the analysis of preference structure; the preference model
itself is also modelled as a belief function. The conflict between various belief functions is used as a
basis for diagnostics describing the choice task.

The computational complexity of the method is high. This paper considers the computational
problem. Some shortcuts are obtained using resuits from the theory of belief functions and graph
theory. Monte Carlo methods and the use of symbolic programming are also discussed.

An expert system for prescribing statistical tests of
non-parametric and simple parametric designs

Gary W. Tubb
Instructional Computing
University of South Florida
Tampa, FL 33620

An inordinate amount of faculty time is often consumed advising bebaviorial science students
in the use of appropriate statistical tests. The experimental designs are often straighforward and result
in analyses of non-parametric or simple parametric data. This paper describes an expert system
written in Turbo PROLOG that prescribes appropriate statistical tests for such simple designs.

The expert system queries the student for example data values of a single subject and the
variable name for each data value. Then the system queries for the probable range of the data values.
Options for missing data and the transformation of data are provided. The studeat then identifies the
variables to be compared, correlated, tabulated, etc. Based upon this information, the expert system
proposes statistical techniques for systematically analyzing the data. The student may query the
expert system regarding the logic of employing a specific statistical technique.

Performance of Several One Sample Procedures
David L. Turner
" and YuYu Wang

Empirical p-values and powers for the usual t test, the signed rank test, a trimmed t test, a
jackknife and a bootstrap procedure were compared using repeated samples of size 30 from normal,
double exponential, cauchy, negative exponential and uniform distributions for normal power values
ranging from 0.05 through 0.95. The Bootstrap performed as weil as the usual t test. The trimmed ¢,
signed rank test and the usual t-test performed about the same. The jackknife performed worst among
these tests. The signed rank test did best for the cauchy distribution.

139




Modeling Parallelism: An Interdisciplinary Approach

Dr. Elizabeth A. Unger, Professor
Kansas State University
Department of Computing and Information Sciences

One can easily conjecture that we humans bave imposed sequential solutions onto most
problems, such are a better match to our physical architecture, but we propose that there
are parallel solutions to many problems and these are a better if they can be matched to
our computer architectures. The discovery of problems involving parallelism in many and
diverse disciplines which are the subject of current research efforts has been a simple
matter, however the development of methods which discover the parallelism possible in
solutions to a problem is not a simple matter and is the focus of this research. This paper
will describe the model and discuss the current research efforts in terms of academic con-
tributions and the strengths gained through the interdisciplinary group approach to prob-
lem solving.

At Kansas State University a group of people from three disciplines in two colleges bas
been formed to provide a critical mass of researchers and to create broader base of
knowledge from which to draw to find an architecture-free model which can be used to
express, in a natural way, the potential concurrency in problem solutions. A partially
defined model based upon a conditioned dataflow which incorporates the concepts of con=
trol flow based on dataflow, of the description of an action at any level of detail with sub-
sequent further refinement if desired. of repetition based upon partitions of data aggre-
gates, of single assignment of values to uniquely identify each incarnation of data objects,
and of partial computation. i.e., computation which can proceed until a needed unavailable
datum is encounter has been developed. The group has four major foci to their work, 1)
continuing development of the theoretical foundation of the model, led by the computer
scientists, 2) use of the model to discover paradigm parallelism models for particular
problems at the small and the large granularity levels of detail, led by the statistician and
engineers, 3) the development of methods of determining the best fit of the disovered
parallelism to existing architectures, led by the statistician and engineers, 4) the continued
implementation of a prototype on a Aistributed network of processors, led by the comput-
er scientists. All members have contributed to all phases.

The current status of our work includes a model which has been shown to contain a core
of statements which always describe determinate problem solutions for atomic data types.
A prototype of the model is operating, albeit a bit inefficiently at the present time, on a
network of loosely coupled processors. The prototype is being used to study problem
solutions where the granularity of the parallelism is small. On going research work in-
volves providing the theoretical basis for temporally partitioned data aggregates, the inclu-
sion in the prototype of partial computation. and limited data structures and the develop-
ment of models of existing architectures using the model for the current multiprocessor
architectures.
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Some Statistical Problems in Meteorology

Grace Wahba
Depatment of Statisgtics
University of Wisconsin

I will discuss some statistical problems that arise in merging data
from various sources to provide estimates of the current state of the
atmosphere, for the purpose of providing initial conditions for
numerical weather prediction. Some interesting theoretical statistical

" questions arise. Of course the practical and theoretical gquestions only

sometimes come together - meteorological data can be very messy and have
error structure that can be hard to model. Other challenges concern the
blending of physical and prisr statistical information, the numerical
problems inherent in the simultaneous analysis of extremely large data
sets, the detection of unreliable forecast, (etc.).

Encoding and Processing of Chinese Language
-- A Statistical Structural Approach

Chaiho C. Wang
U.S. Department of Justice and The George Washington University
washington D, C. 20001

ABSTRACT

Efficient encoding of an ideographic based language, such
as Chinese, depends on two key factors: statistical
structure of the language and pattern recognition
technology. Statistical analysis and computer technology
must evolve hand-in-hand. This paper proposes procedures
that incorporate user friendly input schemes with low
redundancy internal coding methods for computer storage.
Attempts are made to integrate the traditionally divided
phonic and grapnical methods. Special attention is paid
to minimizing numan effort in the total word processing

process.
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ON COVARIANCES OF MARGINALLY ADJUSTED DATA
April, 1988

James S. Weber, Asst. Prof., Dept. of Mgmt, Roosevelt University, Chic
" IL* (+%- Preferred mailing address: PO Box 603, Gurnee, IL 60031-0603.

1980 AMS Subject Classification: Primary 62-07, 62-04
Secondary 62A10, 62D05, €2H17, 62N99, 62P20, 62P25

as =N
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ABSTRACT

The adjustment of contingency tables to have prescribed row and
column sums occurs frequently in applications. (Eg. adjustment of
a cross classified sample; trip distribution & migration modeling;
certain budget allocation techniques; etc.)

If there is uncertainty and a covariance structure associated
with the marginal sums and with the interaction matrix, then it
may be desirable to know how this variability propagates to the
scaled interaction matrix.

We describe this propagation with approximate covariances
obtained from derivatives of the scaled matrix in a linear
function of the covariances of the independent variables.

A number of complications make this effort interesting. 1. The
scaled interaction matrix is implicitly defined fui~tion of the
initial interaction matrix or the row and column sums. The
derivatives require either an inverse of a singular matrix or an
iterative procedure. Here we chose an iterative procedure (and
describe the convergence carefully.) 2. There is a functional
dependence among the row and column constraints. Obviously this
is related to the singular matrix mentioned in #1, but in
applications thic dependence must be specified behaviorally
rather than mathematically.

The contributions of the proposed paper are: 1. We explain an
iterative procedure :Zor computin% the derivatives of the Iterated
Proportional Fittinz Algorithm ("IPFA") for interaction matrices
with specified marzinal sums which properly reflects the
functional dependencz between row sums and column sums; 2. We
clarify that there (> a dependence of the covariances of the
marginally adjusted Jdata upon the way in which the dependence of
the row and column sums is specified so that the sum of the row
sums equals the sum of the column sums; 3. We discuss several ways
of insuring row and column sum consistency; 4. We provide
approximate expressions in a factored form showing in detail the
sensitivities to the variability of each of the independent
variables. (Simulations do not give this level detail.)
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Bayesian Diagnostics for Almost Any Model
Robert E. Weiss
University of Minnesota
When calculating a Bayesian posterior mean using a numerical method such
as Monte Carlo or Quadrature, it is very easy to also compute influence and
outlier case statistics for each data point at small extra cost. Most of the
Bayesian diagnostics currently in the literature are functions of the predictive
distribution of the next data point. This leads to the predictive plot, a graph
of the predictive distribution of the next observation as a covariate changes.
Predictive plots can be used for model checking in addition to the obvious use
as a prognostication.

Variants of Tierney-Kadane
G. Weiss & H. 4. Howlader

JivdriiTy 9 w~inniped, Wizipeyd, Maniisda

Abstract

Sayes aestimation of the rehability function of the logistic
distribution under a log-odds squared error [oss with a non-
informative prior is considered by using the approximation method
of Tierney & Kadane (1986). Oirect aoplication of the procedure
does not yield correct resuits and so some variations of the

procedure are considered.

143




Session: Inference and Expert Systems

COSTAR : An Environment for -
Computer-Guided Data Analysis

by
David A. Whitney
llya Schiller

The Analytic Sciences Corporation
55 Walkers Brook Drive
Reading, MA 01867 (617) 942-2000

This paper describes work in progress on the development and implementation
of COSTAR, a tool for CQordinated STatistical Analysis and Reasoning. COSTAR
illustrates the integration of high-end symbolic / numerical hardware and software
environments. One objective of this work is to use modem "off-the shelf* statistical and
expert-systems programming tools that allow the developer to focus more on the content of

the system, and less on implementation details. Symbolic processing is implemented in

KEE and Common Lisp on a Symbolics workstation, with numerical processing performed
on a mini-supercomputer, the Alliant FX/8 running IMSL and Fortran. The knowledge
base uses frames to represent a hierarchy of data objects and directs the development and
application of rules through the use of rule classes. The system implements such a rule-
based inferencing system for ARIMA time series modeling.

COSTAR is designed to be a tool both for solving statistical problems, and for
studying strategies for solving data analysis problems. In this regard, it owes an intellectual
heritage to both REX and DINDE. The system development perspective here is primarily
that of a statistician, not of an Al scientist. The system is designed for a fairly sophisticated
user who can be expected to contribute to parts of the analysis -- an interactive, graphical,
two-way user interface is an important part of the system. The system leverages the user's
ability and increase efficiency by executing routine analysis, presenting the user with
options when decisions are not clear-cut, and asking for user-input if new situations are
encountered. The system provides for trace or logging facilities to keep track of analysis
sessions. These traces are used to help refine data-dependent statistical strategies, and to
support the refinement, formalization, and "learning” of rules in the knowledge base. Such
traces also play an important role in the validation of the inferencing schemes in the system.
It is designed as a system which will start with basic expertise in a data analysis method,
but that is also able to acquire specific applications expertise as analysis sessions are
recorded and reviewed.

This paper describes thea  itecture of the prototype COSTAR system and the
ARIMA modeling knowledge base .mplemented. System validation procedures are
discussed, along with the trace facility for analysis cataloging and rule refinement. Plans
for study of more sophisticated, more automatic rule refinement schemes are also
discussed.
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Bayes Estimation of Cerebral Metabolic Rate
of Glucose in Stroke Patients
P David Wilsonrs SC Huangs RA Hawkins

Local cerebral metabolic rate of glucose (LCMRG) in a local region )
human brain can be calculated as a nonlinear function of the ra

¢ nstants in a 3-compartment model. The model describes the fate of
deoxyglucose (DG) in the region following injection into a peripheral
vein. The compartments are: (1) DG in plasma, (2) free DG in brain
tissue, and (3) phosphorylated DG in brain tissue. If the injectected
DG is labeled with Fluorine-~18, a positron emitter, a positron emission
tomography (PET) scanner can record the relative concentration of the
F-18 label in the region. To a close approximation the contribution of
compartment (1) to the PET data can be ignored, and the PET data can be
said to represent a noisy version of the combined contributions from
compartments (2) and (3). From a linear systems viewpoint, the F-~18
concentration versus time function in the combined compartments (2) and
(3) can be viewed as the output function of a system in which the
impulse response is a biexponential time function witn coefficients
(called macroparameters) which are nonlinear functions of the rate
constants. The input to the system is the concentration versus time
function of F=-18 in compartment (1), and this can be observed in a
peripheral vessel. The output function is the convolution of she
impulse response and the input function. If the input and output
functions are cbserved repeatedly over a 2.5 to 3 hour period after
injection, nonlinear regression methods can be used to estimate the
macroparameter coefficients of the biexponontial impulse response, and
from these the LCMRG can be estimated. However, the 1long scanning
period required is seen as unacceptable for routine clinical studies
because the patient is required to 1lie in the scanner without moving
his head for the entire period and because of demand for scanner time.
Thus a procedure is desired which will estimate LCMRG from a PET
observation at a single time and the input function observed up to that
time. Several such "single scan” methods are currently in clinical
use. These methods use the values of estimates of the population mean
rate constants (but are not Bayes procedures). The rate constants are
different in normal and stroke regions of the brain, and preliminary
perfusion scans and transmission computed tomography scans would be
required to delineate the stroke region of the brain. But LCMRG
estimation procedures are desired to be independent of such preliminary
scans, and the existing single scan methods make large systematic
errors in stroke tissue when using mean rate constant values for normal
tissue. We developed a Bayes procedure for use with a single scan.
Empirical prior mean vectors and covariance matrices are available for
the macroparameters for both normal and stroke tissure separately.
Empirical prior results are also available for the error variance of
the PET observations. For each tissue type, we assumed that the macro-
parameters are Gaussian distributed among individuals in the population
and that the reciprocal error variances are gamma distributed. The
Bayes procedure computes the posterior distribution of the macro-
parameters twice, once using the prior density for each tissue type,
and selects the macroparameter estimates associated with the highest
posterior density. We conducted computer simulation studies to display
the behavior of the Bayes procedure for stroke tissue and to compare it
with the other single scan methods. Mean and root-mean-square percent
errors are given for a range of true LCMRG values in stroke tissue.
The Bayes procedure is seen to be superior to the other methods.
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NETWORKS TO SUPPORT SCIENCE

Stephen Wolff
National Science Foundation
1800 G Street, N. W.
Washington, D. C. 20550
(Electronic Mail: steve@cerberus.DNCR].NSF.GOY

ABSTRACT

More than 150 academic, industrial, and government research campuses are now
attached to NSF-sponsored, mid-level computer networks and interconnected by
the transcontinental NSFNET Backbone Network. The connection of multiple
supercomputers to the Backbone has extended high performance computing to the
largest constituency ever; in particular, more statisticians than ever before
can be Practicing - as well as Thinking - the Unthinkable.

0f equal, and in the long run even greater, importance is that the transparent
connection of the NSFNET family of networks and the ARPANET (achieved by joint
adoption of an open protocol set) has achieved a critical level of scientist-
to-scientist connectivity. Just as highways and railroads enabled the ready
assemblage and interaction of raw material, capital, and labor to fuel the
Industrial Revolution, so the emerging National Research Internet is enabling
intellectual concentrations of unprecedented scale and agility, and a new
epoch of the Information Revolution based on Collaboration Technology is
underway.

All- Regression _on H r Multipr r

Peter C. Wollan
Department of Mathematics
Michigan Technological University
Houghton, Ml 49931

All-subsets regression (that is, computing linear regressions for all
subsets of k predictors) is an inherently paraliel problem, suitable for
exploring the use of hypercube multiprocessors in statistical computation.
The algorithm described here uses the sweep operator for introducing or
removing variables; the load is apportioned among processors in a nearly
optimal way, based on the Gray code embedding of a hypercube into a
torus. The algorithm is implemented in FORTRAN on an Intel iPSC d4. The
program’'s general behavior suggests that while hypercube multiprocessors
are potentially valuable for data analysis, their use will require
development of new methods.
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Duane E. Wolting
Aerojet TechSystems Company
ABSTRACT

A method is presented for classifying multivariate observations.
The method uses a Bayes decision rule, which is initially
determined from a sample of training observations. Subsequent
observations classified with this decision rule are used to
adjust the rule in a nonsupervised fashion. These same
observations are then reclassified using the adjusted decision
rule. The process is repeated until convergence is attained.

The behavior of this algorithm is examined in a series of
computer simulation studies. The effects of interclass
separation, training sample size, number of classes and
dimensionality are considered. The results suggest that under
certain conditions this method reduces the misclassification rate
by as much as 30%. Although computationally intensive, the
algorithm appears to converge in relatively few iterations.
Applications to pattern recognition are discussed.

KEYWORDS: Bayesian estimation, classification, computationally

intensive methods, decision-~theoretic recognition, iterative
procedures, nonsupervised learning, pattern recognition.
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On the Convergence of Varieble Bandwidth
Kernel Estomators of a Density Function

Ting Yang
University of Cincinnati

We consider here the Rosenblett-Parzen kernel estimators of an unknown
density function, but this time with a variable (local) bandwidth. The consistency
is studied for variable bandwidth kernel estimators. We also have simulated and
shown thet in terms of integrated mean squared error (for any sample size), the
kernel estim.tors with local bandwidth cnoice are better than the ordinary kernel
estimators with global bandwidth if optimal bandwidths are used.

A COMPARISON OF SEVERAL METHODS FOR GENERATING EXPONENTIAL POWER VARIATES

Dean M. Young
Baylor University

Danny W. Turner
Baylor Universicy

John W. Seaman
University of Southwestern Louisiana

ABSTRACT

This paper compares several alternative algorithms for generating
observations from an exponencial power distribution with parameter r,

1 <r<2. The algorithms include squeeze methods, a ratio-of-uniforms
method, and an almost-exact inversion method. A comparison of marginal
execution times is made among the variaous methods mentioned above and
the generalized acceptance/rejection method proposed by Tadikamalla

(1982).
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I Interface Conference Expenses Billed to AFOSR
Clerical Support
Salary to Registration Personnel 1122
' Travel
Hal Stern 116
l Total Travel 116
Per Diem
' Munish Mehra 334
M. Bolorforoush 25
John Miller 31
Kim Anh Do 334
' Claire Mathieu 69
Hal Stern 25
l Total Per Diem 818
Registration Remission
' Jerome Liang 130
Ahmad Mokatrin 105
: Reza Modarres 105
Kim Anh Do 105
' Y. B. Lim 105
Daniel Normolle 105
Andrew Bruce. 105
l Lynn A. Sleeper 85
Jeff Banfield 105
Tina Song 105
l Celesta Ball 130
M. Bolorforoush 105
Hung Le 105
John Miller 105
' Tom Kaufman 105
Douglas Nychka 105
Claire Mathieu 130
l Bradley Efron 105
Kathryn Chaloner 130
R. W. Oldford 105
Katherine Hurley 95
' Deborah Donnell 120
Naomi Altman 105
l Hal Stern 95
Total Registration Remission 2605
' Invited Speaker Honorarium
Thomas Banchoff 500
Wolfgang Haerdle 575
l Total Invited Speaker Honorarium 1075
l Total Participant Expenses 4614




Miscellaneous Expenses

Letterhead 282
Signs and Signholders 289
Proceedings Expenses 976
Certiticates 52
Audio-Visual Rental 1686
Duplicating 70

Total Miscellaneous Expenses
Total Direct
Indirect at 10% of Total Direct

Grand Total

3355

9091

9209

10000




